Autors: Pandiev, I. M.
Title: Design and Implementation of Electronically Controllable Sinusoidal Oscillators Using Commercially Available Current-Feedback Operational Amplifiers with Externally Accessible Compensation Node z
Keywords: Analog circuits, CCII+, CFOA, oscillators, VCOs

Abstract: This paper presents the structure and operational principles of high-frequency electronically controllable sinusoidal oscillators employing current-feedback operational amplifiers (CFOAs) with externally accessible compensation node z as active components. The resonant circuits in the oscillators are connected to the terminal z, and for them in the selective network varactor diodes or varicaps as the variable capacitances are utilized, which are controlled by external DC voltage. Based on an analysis of the proposed circuit configurations, analytical expressions for the characteristic equation in a steady-state mode of operation and formulas for the basic electrical parameters have been obtained. In order to verify the functionality of the proposed electronic circuits and the effectiveness of the derived analytical expressions, an experimental and simulation study of sample electronic circuits with commercially available integrated circuit CFOAs AD844 in the frequency range up to about 10 MHz is performed. The obtained results for the studied electronic circuits confirm the theoretical studies and hypotheses, and the comparative analysis shows that the maximum value for the relative error does not exceed 10%, which is acceptable considering the tolerances of the technological parameters of the used passive and active elements.

References

  1. J. B. Oakes, Analysis of junction transistor audio oscillator circuits, Proc. IRE 42 (1954) 1235–1238, doi:10.1109/JRPROC.1954.274790.
  2. M. Seifart, Signalgeneratoren, Analoge Schaltungen, 6 Auflage (Verlag Technik, Berlin, Germany, 2003), pp. 460–484 (in German).
  3. A. Sedra, K. Smith, T. Carusone and V. Gaudet, Oscillators, Microelectronic Circuits, 8th edn. (Oxford University Press, New York, NY, USA, 2020), pp. 1066–1107.
  4. Y.-H. Yun, T.-Y. J. Kao and K. O. Kenneth, Variable inductors in CMOS for millimeter-wave applications, IEEE Electron Device Lett. 33 (2012) 1081–1083, doi:10.1109/LED.2012.2196966.
  5. C.-W. Lim, H.-Y. Noh and T.-Y. Yun, Small VCO-gain variation adding a bias-shifted inversion-mode MOS varactor, IEEE Microw. Wirel. Compon. Lett. 27 (2017) 395–397, doi:10.1109/LMWC.2017.2678431.
  6. J. Prinzie, J. Christiansen, P. Moreira, M. Steyaert and P. Leroux, A 2.56-GHz SEU radiation hard LC-tank VCO for high-speed communication links in 65-nm CMOS technology, IEEE Trans. Nucl. Sci. 65 (2018) 407–412, doi:10.1109/ TNS.2017.2764501.
  7. J. Prinzie and V. De Smedt, Time-dependent single-event effects in CMOS LC-oscillators, IEEE Trans. Nucl. Sci. 66 (2019) 2048–2054, doi:10.1109/TNS. 2019.2930414.
  8. X. Gui, R. Tang, Y. Zhang, D. Li and L. Geng, A voltage-controlled ring oscillator with VCO-gain variation compensation, IEEE Microw. Wirel. Compon. Lett. 30 (2020) 288–291, doi:10.1109/LMWC.2020.2967391.
  9. S. Franco, Analytical foundations of current-feedback amplifiers, 1993 IEEE Int. Symp. Circuits and Systems (ISCAS) (IEEE, 1993), pp. 1050–1053, doi:10.1109/ ISCAS. 1993.393914.
  10. W. Jung, Op Amp basics, Op Amp Applications (Analog Devices, Norwood, MA, 2004), pp. 1-1–1-126.
  11. R. Senani, D. R. Bhaskar, A. K. Singh and V. K. Singh, CFOAs: Merits, demerits, basic circuits and available varieties, Current Feedback Operational Amplifiers and Their Applications, 1st edn. (Springer, New York, NY, USA, 2013), pp. 25–48.
  12. H. Barthélemy, V. Gies, S. Meillère, R. Vauché, E. Kussener and M. Fourniol, CMOS voltage and current feedback opamps: A comparison between two similar topologies, Int. J. Electron. Lett. 9 (2021) 187–202, doi:10.1080/21681724.2020.1717004.
  13. K. Mathur, P. Venkateswaran and R. Nandi, A linear voltage controlled quadrature oscillator implementation using VCII, IEICE Electron. Express 19 (2022) 1–4, doi:10.1587/elex.19.20220112.
  14. S. S. Boraha, A. Singh M. Ghosh and A. Ranjan, Electronically tunable higher-order quadrature oscillator employing CDBA, Microelectron. J. 108 (2021) 1–18, doi:10.1016/j.mejo.2020.104985.
  15. R. Nandi, K. Mathur and P. Venkateswaran, Electronically tunable immittances with applications to LP, BP, HP filter and VCO implementation, Int. J. Electron. Lett. 9 (2021) 65–75, doi:10.1080/21681724.2019.1672800.
  16. A. Kumar, A. Kushwaha and S. K. Paul, Electronically tunable mixed mode quadrature oscillator using DX-MOCCII, J. Circuits Syst. Comput. 30 (2021) 2150006, doi:10.1142/S0218126621500067.
  17. M. Kumengern and F. Khate, Current mode universal filter and quadrature oscillator using current controlled current follower transconductance amplifier, Analog Integr. Circuits Signal Process. 100 (2019) 235–248, doi:10.1007/s10470-018-1345-8.
  18. I. Pandiev, Analytical synthesis and implementation of low-frequency precision electronically controlled CFOA-based quadrature oscillator, Eng. Sci. LVII (2020) 34–49, doi:10.7546/EngSci.LVII.20.01.03.
  19. I. Pandiev, Voltage-controlled oscillators using CFOAs with correction terminal Z, Int. J. Electron. (2023), doi:10.1080/00207217.2023.2248569.
  20. J. Bayard and M. Ayachi, OTA- or CFOA-based LC sinusoidal oscillators analysis of the magnitude stabilization phenomenon, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49 (2002) 1231–1236, doi:10.1109/TCSI.2002.801246.
  21. M. T. Abuelma’atti and N. R. Almutairi, A new electronic interface for inductive sensors, 2015 10th Asian Control Conf. (ASCC) (IEEE, 2015), pp. 1–4, doi:10.1109/ASCC.2015.7244587.
  22. I. M. Pandiev, Analysis and design of LC amplifiers and LC oscillators using current-feedback amplifiers, Int. J. Electron. 93 (2006) 663–677, doi:10.1080/ 00207210600645812.
  23. U. Tietze, C. Schenk and E. Gamm, Signal generators, Electronic Circuits, 2nd edn. (Springer, Berlin, Heidelberg, 2008), pp. 843–866.
  24. A. Fabre, Dual translinear voltage/current convertor, Electron. Lett. 19 (1983) 1030–1031, doi:10.1049/el:19830698.
  25. L. Wangenheim, Lineare oszillatoren, Aktive Filter und Oszillatoren (Springer-Verlag, Berlin, 2008), pp. 335–363 (in German).
  26. A. Fabre, O. Saaid, F. Wiest and C. Boucheron, Current controlled bandpass filter based on translinear conveyors, Electron. Lett. 31 (1995) 1727–1728, doi:10.1049/el:19951225.
  27. S. Farhi and S. Papazov, Steady-state operation in linear electrical circuits, Theoretical Electric Engineering, Part 1, Chap. 3, 2nd edn. (Tehnika, Sofia, Bulgaria, 1987), pp. 99–193 (in Bulgarian).
  28. AD844 60 MHz, 2000 V/µs, Monolithic Op Amp with Quad Low Noise — Datasheet (2017), https://www.analog.com/en/products/ad844.html.
  29. Low-voltage variable capacitance double diode BB201 — Datasheet (2022), https://www.nxp.com/part/BB201#/.
  30. D. F. Bowers, M. Alexander and J. Buxton, A comprehensive simulation macromodel for ‘current feedback’ operational amplifiers, IEE Proc. G, Circuits Devices Syst. 137 (1990) 137–145.
  31. BB201 SPICE model (2022), https://www.nxp.com/products/radio-frequency/rf-discrete-components-low-power/rf-diodes/varicap-diodes/vco-and-fm-radio-tuning-/lowvoltage-variable-capacitance-double-diode:BB201?fpsp=1#design-resources.
  32. K4000005 Product — Datasheet (2022), https://www.midassensors.com/productexplorer/ultrasonic-accessories/matching-transformers/k4000005.
  33. R. Senani, D. R. Bhaskar, V. K. Singh and R. K. Sharma, Sinusoidal oscillator realizations using modern electronic circuit building blocks, Sinusoidal Oscillators and Waveform Generators Using Modern Electronic Circuit Building Blocks, 1st edn. (Springer, New York, NY, USA, 2016), pp. 269–394.

Issue

Journal of Circuits, Systems and Computers, 2024, , https://doi.org/10.1142/S0218126624502529

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science