Autors: Mladenov, V. M., Kirilov, S. M.
Title: A Memristor Neural Network Based on Simple Logarithmic-Sigmoidal Transfer Function with MOS Transistors
Keywords: artificial intelligence, logarithmic-sigmoidal transfer function, LTSPICE models, memristor modeling, memristor neural network, metal-oxide memristors

Abstract: Memristors are state-of-the-art, nano-sized, two-terminal, passive electronic elements with very good switching and memory characteristics. Owing to their very low power usage and a good compatibility to the existing CMOS ultra-high-density integrated circuits and chips, they are potentially applicable in artificial and spiking neural networks, memory arrays, and many other devices and circuits for artificial intelligence. In this paper, a complete electronic realization of an analog circuit model of the modified neural net with memristor-based synapses and transfer function with memristors and MOS transistors in LTSPICE is offered. Each synaptic weight is realized by only one memristor, providing enormously reduced circuit complexity. The summing and scaling implementation is founded on op-amps and memristors. The logarithmic-sigmoidal activation function is based on a simple scheme with MOS transistors and memristors. The functioning of the suggested memristor-based neural network for pulse input signals is evaluated both analytically in MATLAB-SIMULINK and in the LTSPICE environment. The obtained results are compared one to another and are successfully verified. The realized memristor-based neural network is an important step towards the forthcoming design of complex memristor-based neural networks for artificial intelligence, for implementation in very high-density integrated circuits and chips.

References

  1. Wang S. Song L. Chen W. Wang G. Hao E. Li C. Hu Y. Pan Y. Nathan A. Hu G. et al. Memristor-Based Intelligent Human-Like Neural Computing Adv. Electron. Mater. 2023 9 2200877 10.1002/aelm.202200877
  2. Sah M.P. Kim H. Chua L.O. Brains Are Made of Memristors IEEE Circ. Syst. Mag. 2014 14 12 36 10.1109/MCAS.2013.2296414
  3. Aggarwal C. Neural Networks and Deep Learning Springer International Publishing AG Berlin, Germany 2018 978-3-319-94463-0
  4. Krestinskaya O. Salama K.N. James A.P. Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits IEEE Trans. Circuits Syst. I Regul. Pap. 2019 66 719 732 10.1109/TCSI.2018.2866510
  5. Bradley WM D. Mears R.J. Backpropagation learning using positive weights for multilayer optoelectronic neural networks Proceedings of the Conference Proceedings LEOS’96 9th Annual Meeting IEEE Lasers and Electro-Optics Society Boston, MA, USA 18–21 November 1996 Volume 1 294 295
  6. Parisien C. Anderson C.H. Eliasmith C. Solving the problem of negative synaptic weights in cortical models Neural Comput. 2008 20 1473 1494 10.1162/neco.2008.07-06-295
  7. Xu W. Wang J. Yan X. Advances in memristor-based neural networks Front. Nanotechnol. 2021 3 645995 10.3389/fnano.2021.645995
  8. Hong Q. Zhao L. Wang X. Novel circuit designs of memristor synapse and neuron Neurocomputing 2019 330 11 16 10.1016/j.neucom.2018.11.043
  9. Sah M.P. Yang C. Kim H. Chua L. A voltage mode memristor bridge synaptic circuit with memristor emulators Sensors 2012 12 3587 3604 10.3390/s120303587 22737026
  10. Dai Y. Feng Z. Wu Z. A Novel Window Function Enables Memristor Model With High Efficiency Spiking Neural Network Applications IEEE Trans. Electron Devices 2022 69 3667 3674 10.1109/TED.2022.3172050
  11. Wen S. Xie X. Yan Z. Huang T. Zeng Z. General memristor with applications in multilayer neural networks Neural Netw. 2018 103 142 149 10.1016/j.neunet.2018.03.015
  12. Zhang Y. Wang X. Friedman E.G. Memristor-Based Circuit Design for Multilayer Neural Networks IEEE Trans. Circuits Syst. I Regul. Pap. 2018 65 677 686 10.1109/TCSI.2017.2729787
  13. Su B. Cai J. Wang Z. Chu J. Zhang Y. A π-Type Memristor Synapse and Neuron With Structural Plasticity Front. Phys. 2022 9 798971 10.3389/fphy.2021.798971
  14. Wang Z. Joshi S. Savel’ev S. Song W. Midya R. Li Y. Rao M. Yan P. Asapu S. Zhuo Y. et al. Fully memristive neural networks for pattern classification with unsupervised learning Nat. Electron. 2018 1 137 145 10.1038/s41928-018-0023-2
  15. Zhang X. Wang X. Ge Z. Li Z. Wu M. Borah S. A Novel Memristive Neural Network Circuit and Its Application in Character Recognition Micromachines 2022 13 2074 10.3390/mi13122074
  16. Wang Y. Xu H. Wang W. Zhang X. Wu Z. Gu R. Li Q. Liu Q. A Configurable Artificial Neuron Based on a Threshold-Tunable TiN/NbOx/Pt Memristor IEEE Electr. Device Lett. 2022 43 631 634 10.1109/LED.2022.3150034
  17. Li B. Shi G. A CMOS rectified linear unit operating in weak inversion for memristive neuromorphic circuits Integration 2022 87 24 28 10.1016/j.vlsi.2022.05.007
  18. Strukov D.B. Snider G.S. Stewart D.R. Williams S. The missing memristor found Nature 2008 453 80 83 10.1038/nature06932 18451858
  19. Ascoli A. Tetzlaff R. Biolek Z. Kolka Z. Biolkova V. Biolek D. The Art of Finding Accurate Memristor Model Solutions IEEE J. Emerg. Sel. Top. Circuits Syst. 2015 5 133 142 10.1109/JETCAS.2015.2426493
  20. James A. Memristors-Circuits and Applications of Memristor Devices IntechOpen London, UK 2019 132 10.5772/intechopen.77562
  21. Lehtonen E. Laiho M. CNN using memristors for neighborhood connections Proceedings of the 2010 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA 2010) Berkeley, CA, USA 3–5 February 2010 1 4
  22. Joglekar Y.N. Wolf S.J. The elusive memristor: Properties of basic electrical circuits Eur. J. Phys. 2009 30 661 10.1088/0143-0807/30/4/001
  23. Biolek Z. Biolek D. Biolkova V. SPICE Model of Memristor with Nonlinear Dopant Drift Radioengineering 2009 18 210 214
  24. Ascoli A. Corinto F. Senger V. Tetzlaff R. Memristor model comparison IEEE Circ. Syst. Mag. 2013 13 89 105 10.1109/MCAS.2013.2256272
  25. Mohammad B. Jaoude M.A. Kumar V. Al Homouz D.M. Abu Nahla H. Al-Qutayri M. Christoforou N. State of the art of metal oxide memristor devices Nanotechnol. Rev. 2016 5 311 329 10.1515/ntrev-2015-0029
  26. Dautovic S. Samardzic N. Juhas A. Ascoli A. Tetzlaff R. Simscape and LTspice models of HP ideal generic memristor based on finite closed form solution for window functions Proceedings of the 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS) Dubai, United Arab Emirates 28 November–1 December 2021 1 6 10.1109/ICECS53924.2021.9665488
  27. Zafar M. Awais M. Shehzad M. Computationally efficient memristor model based on Hann window function Microelectron. J. 2022 125 105476 10.1016/j.mejo.2022.105476
  28. Solovyeva E.B. Azarov V.A. Comparative Analysis of Memristor Models with a Window Function Described in LTspice Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) Moscow, Russia 26–29 January 2021 1097 1101
  29. Ascoli A. Weiher M. Herzig M. Slesazeck S. Mikolajick T. Tetzlaff R. Graph Coloring via Locally-Active Memristor Oscillatory Networks J. Low Power Electr. Appl. 2022 12 22 10.3390/jlpea12020022
  30. Mladenov V. Advanced Memristor Modeling—Memristor Circuits and Networks MDPI Basel, Switzerland 2019 172 10.3390/books978-3-03897-103-0 978-3-03897-104-7
  31. Mladenov V. A Unified and Open LTSPICE Memristor Model Library Electronics 2021 10 1594 10.3390/electronics10131594
  32. Kim P. Matlab Deep Learning. With Machine Learning, Neural Networks and Artificial Intelligence APress Berkeley, CA, USA 2017 151 10.1007/978-1-4842-2845-6 978-1-4842-2845-6
  33. May C. Passive Circuit Analysis with LTspice®—An Interactive Approach Springer Berlin/Heidelberg, Germany 2020 763 978-3-030-38304-6
  34. Mladenov V. Tsenov G. Kirilov S. Memristor-Based Neural Network Implementation with Adjustable Synaptic Weights in LTSPICE Proceedings of the 2023 International Conference Automatics and Informatics (ICAI) Varna, Bulgaria 5–7 October 2023 403 408 10.1109/ICAI58806.2023.10339092
  35. Mladenov V. Tsenov G. Kirilov S. LTSPICE Memristor Neuron with MOS Transistor-Based Logarithmic-Sigmoidal Activation Function Proceedings of the 18th IEEE International Workshop on Cellular Nanoscale Networks and Their Applications and the 8th Memristor and Memristive Symposium Xanthi, Greece 28–30 September 2023 Available online: https://cnna.duth.gr/ (accessed on 27 November 2023)
  36. Campbell K.A. Self-directed channel memristor for high temperature operation Microelectron. J. 2017 59 10 14 10.1016/j.mejo.2016.11.006
  37. Yuan R. Tiw P.J. Cai L. Yang Z. Liu C. Zhang T. Ge C. Huang R. Yang Y. A neuromorphic physiological signal processing system based on VO2memristor for next-generation human-machine interface Nat. Com. 2023 14 3695 10.1038/s41467-023-39430-4
  38. Marco M. Forti M. Moretti R. Pancioni L. Tesi A. Complete Stability of Neural Networks With Extended Memristors IEEE Trans. Neural Netw. Learn. Syst. 2023 1 15 10.1109/TNNLS.2023.3279406
  39. Di Marco M. Forti M. Pancioni L. New Conditions for Global Asymptotic Stability of Memristor Neural Networks IEEE Trans. Neural Netw. Learn. Syst. 2018 29 1822 1834 10.1109/TNNLS.2017.2688404

Issue

Electronics (Switzerland), vol. 13, 2024, , https://doi.org/10.3390/electronics13050893

Цитирания (Citation/s):
1. Salvador, E., Rodriguez, R. and Miranda, E., 2024. “A Simple, Robust, and Versatile MATLAB Formulation of the Dynamic Memdiode Model for Bipolar-Type Resistive Random Access Memory Devices,” Journal of Low Power Electronics and Applications, ISSN 20799268, DOI 10.3390/jlpea14020030 vol. 14, issue (2), pp. 1-11, (Web of Science, Scopus, Google Scholar) SJR 0.375, IF 1.6 - 2024 - в издания, индексирани в Scopus или Web of Science
2. Han, G., Yang, Q. and Xu, Y., 2024. “A Memristor-Based Circuit with the Loser-Take-All Mechanism for Classification,” Electronics, vol. 13, issue (19), pp. 1-15, ISSN 20799292, DOI 10.3390/electronics13193900 (Web of Science, Scopus, Google Scholar) IF 2.6, SJR 0.644 - 2024 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science