Autors: Georgiev V., Tarulli M., Venkov, G. P. Title: Local uniqueness of ground states for the generalized Choquard equation Keywords: Abstract: We consider the generalized Choquard equation of the type (Formula presented.) for 3≤n≤5, with Q∈Hrad1(Rn), where the operator I is the classical Riesz potential defined by I(f)(x)=(-Δ)-1f(x) and the exponent p∈(2,1+4/(n-2)) is energy subcritical. We consider Weinstein-type functional restricted to rays passing through the ground state. The corresponding real valued function of the path parameter has an appropriate analytic extension. We use the properties of this analytic extension in order to show local uniqueness of ground state solutions. The uniqueness of the ground state solutions for the case p=2, i.e. for the case of Hartree–Choquard, is well known. The main difficulty for the case p>2 is connected with a possible lack of control on the Lp norm of the ground states as well on the lack of Sturm’s comparison argument. References - S.-M. Chang S. Gustafson K. Nakanishi T.-P. Tsai Spectra of linearized operators for NLS solitary waves SIAM J. Math. Anal. 2008 39 4 1070 1111 2368894 10.1137/050648389
- S. Cuccagna M. Tarulli On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential J. Math. Anal. Appl. 2016 436 2 1332 1368 3447012 10.1016/j.jmaa.2015.12.049
- Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vols. I, II. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman
- H. Genev G. Venkov Soliton and blow-up solutions to the time-dependent Schrödinger–Hartree equation Discrete Contin. Dyn. Syst. Ser. S 2012 5 5 903 923 2877355
- V. Georgiev A. Stefanov On the classification of the spectrally stable standing waves of the Hartree problem Phys. D 2018 370 29 39 3772744 10.1016/j.physd.2018.01.002
- V. Georgiev M. Tarulli G. Venkov Existence and uniqueness of ground states for p-Choquard model Nonlinear Anal. 2019 179 131 145 3886628 10.1016/j.na.2018.08.015
- Georgiev, V., Venkov, G.: On uniqueness for the generalized Choquard equation. In: Advances in Harmonic Analysis and Partial Differential Equations, Trends Math., pp. 263–278. Birkhäuser/Springer, Cham (2020)
- M. Ghimenti V. Moroz J. Van Schaftingen Least action nodal solutions for the quadratic Choquard equation Proc. Am. Math. Soc. 2017 145 2 737 747 3577874 10.1090/proc/13247
- M. Ghimenti J. Van Schaftingen Nodal solutions for the Choquard equation J. Funct. Anal. 2016 271 1 107 135 3494244 10.1016/j.jfa.2016.04.019
- E. Hille Ordinary Differential Equations in the Complex Domain 1997 Mineola Dover Publications, Inc. Reprint of the 1976 original
- M.K. Kwong Uniqueness of positive solutions of Δu-u+up=0 in RnArch. Ration. Mech. Anal. 1989 105 3 243 266 10.1007/BF00251502
- E. Lenzmann Uniqueness of ground states for pseudorelativistic Hartree equations Anal. PDE 2009 2 1 1 27 2561169 10.2140/apde.2009.2.1
- E.H. Lieb Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation Stud. Appl. Math. 1977 57 2 93 105 471785 10.1002/sapm197757293
- Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2001)
- K. McLeod J. Serrin Uniqueness of solutions of semilinear Poisson equations Proc. Natl. Acad. Sci. U.S.A. 1981 78 11, part 1 6592 6595 634934 10.1073/pnas.78.11.6592
- K. McLeod J. Serrin Uniqueness of positive radial solutions of Δu+f(u)=0 in RnArch. Ration. Mech. Anal. 1987 99 2 115 145 10.1007/BF00275874
- V. Moroz J. Van Schaftingen Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics J. Funct. Anal. 2013 265 2 153 184 3056699 10.1016/j.jfa.2013.04.007
- V. Moroz J. Van Schaftingen Existence of groundstates for a class of nonlinear Choquard equations Trans. Am. Math. Soc. 2015 367 9 6557 6579 3356947 10.1090/S0002-9947-2014-06289-2
- M. Tarulli H2-scattering for systems of weakly coupled fourth-order NLS equations in low space dimensions Potential Anal. 2019 51 2 291 313 3983508
- M. Tarulli G. Venkov Decay and scattering in energy space for the solution of weakly coupled Schrödinger–Choquard and Hartree–Fock equations J. Evol. Equ. 2021 21 2 1149 1178 4278392 10.1007/s00028-020-00621-x
- M. Tarulli G. Venkov Decay in energy space for the solution of fourth-order Hartree–Fock equations with general non-local interactions J. Math. Anal. Appl. 2022 516 2 4459013 10.1016/j.jmaa.2022.126533
- M.I. Weinstein Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 16 3 472 491 783974 10.1137/0516034
- C.-L. Xiang Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions Calc. Var. Partial Differ. Equ. 2016 55 6 1 25 3566934 10.1007/s00526-016-1068-6
Issue
| Calculus of Variations and Partial Differential Equations, vol. 63, 2024, , https://doi.org/10.1007/s00526-024-02742-4 |
|