Autors: Nikolov, N. D., Mitov, A. S., Kralov, I. M.
Title: Advanced 2D Computational Fluid Dynamics Model of an External Gear Pump Considering Relief Grooves
Keywords: CFD, external gear pump, relief grooves, volumetric flow rate

Abstract: The article presents an advanced two-dimensional (2D) computational fluid dynamics (CFD) model of an external gear pump which considers relief grooves. Relief grooves are limiting design features for the flow process of this type of pump, and their influence in existing studies is considered by a three-dimensional (3D) model only. The structural modification proposed by the authors is beyond the possibilities of real implementation, but it gives the possibility to precisely model the pump’s design features. In contrast to the existing studies (using 3D CFD), the proposed advanced 2D model requires significantly fewer computing resources. Numerical experiments were carried out using the 2D model at different pump operating modes depending on the rotation frequency (950–1450 min−1) and pressure load (5–150 bar). The numerical results were validated by a real-world experiment for the same pump operating modes using an existing laboratory experimental setup. An analysis of the CFD model and real experiment results was carried out by determining a quantitative index of match (FIT), which varies in the range of 97.93–99.82%. This proves the performance of the proposed CFD model, which can be further used as a part of more complex hydraulic systems models.

References

  1. Findeisen D. Helduser S. Ölhydraulik Springer Berlin/Heidelberg, Germany 2015
  2. Ivantysyn J. Ivantysynova M. Hydrostatic Pumps and Motors: Principles, Design, Performance, Modelling, Analysis, Control and Testing Academia Books International New Delhi, India 2001
  3. Mitov A. Nikolov N. Nedelchev K. Kralov I. CFD Modeling and Experimental Validation of the Flow Processes of an External Gear Pump Processes 2024 12 261 10.3390/pr12020261
  4. Stan L.C. Gordes A.N. Agape A.G. Numerical simulation of a gear pump Int. J. Mod. Manuf. Technol. 2023 15 107 114
  5. Patil S. Numerical Simulation of Multi-Dimensional Flows in a Gear Pump Master’s Thesis Youngstown State University Youngstown, OH, USA 2006
  6. Maccioni L. Concli F. Computational fluid dynamics applied to lubricated mechanical components: Review of the approaches to simulate gears, bearings, and pumps Appl. Sci. 2020 10 8810 10.3390/app10248810
  7. Mali P.S. Joshi G.S. Patil I.A. Performance improvement of external gear pump through CFD analysis Int. Res. J. Eng. Technol. 2018 5 430 433
  8. Del Campo D. Analysis of the Suction Chamber of External Gear Pumps and Their Influence on Cavitation and Volumetric Efficiency Ph.D. Thesis Universitat Politècnica de Catalunya Barcelona, Spain 2012
  9. Munih J. Hočevar M. Petrič K. Dular M. Development of CFD-based procedure for 3D gear pump analysis Eng. Appl. Comput. Fluid Mech. 2020 14 1023 1034 10.1080/19942060.2020.1789506
  10. Manring N.D. Kasaragadda S.B. The theoretical flow ripple of an external gear pump J. Dyn. Syst. Meas. Control Trans. ASME 2003 125 396 404 10.1115/1.1592193
  11. Choudhuri K. Biswas N. Mandal S.K. Mitra C. Biswas S. A numerical study of an external gear pump operating under different conditions Mater. Today Proc. 2022 in press
  12. Zhao X. Vacca A. Dhar S. Numerical Modeling of a Helical External Gear Pump with Continuous-Contact Gear Profile: A Comparison between a Lumped-Parameter and a 3D CFD Approach of Simulation Proceedings of the BATH/ASME 2018 Symposium on Fluid Power and Motion Control FPMC2018 Bath, UK 12–14 September 2018
  13. Orlandi F. Muzzioli G. Milani M. Paltrinieri F. Montorsi L. Development of a numerical approach for the CFD simulation of a gear pump under actual operating conditions Fluids 2023 8 244 10.3390/fluids8090244
  14. Corvaglia A. Rundo M. Bonati S. Rigosi M. Simulation and experimental activity for the evaluation of the filling capability in external gear pumps Fluids 2023 8 251 10.3390/fluids8090251
  15. Gafurov S. Rodionov L. Makaryants G. Simulation of Gear Pump Noise Generation Proceedings of the 9th FPNI Ph.D. Symposium on Fluid Power FPNI 2016 Florianópolis, Brazil 26–28 October 2016
  16. Tang C. Wang Y.S. Gao J.H. Guo H. Fluid-sound coupling simulation and experimental validation for noise characteristics of a variable displacement external gear pump Noise Control Eng. J. 2014 62 123 131 10.3397/1/376212
  17. Fiebig W. Influence of the inter teeth volumes on the noise generation in external gear pumps Arch. Acoust. 2014 39 261 266 10.2478/aoa-2014-0030
  18. Mucchi E. Rivola A. Dalpiaz G. Modelling dynamic behaviour and noise generation in gear pumps: Procedure and validation Appl. Acoust. 2014 77 99 111 10.1016/j.apacoust.2013.10.007
  19. Woo S. Opperwall T. Vacca A. Rigosi M. Modeling noise sources and propagation in external gear pumps Energies 2017 10 1068 10.3390/en10071068
  20. Fiebig W. Noise Control of Fluid Power Units Proceedings of the 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics Athens, Greece 10–14 July 2016
  21. Carletti E. Pedrielli F. Sound Power Levels of Hydraulic Pumps using Sound Intensity Techniques: Towards More Accurate Values? Proceedings of the 12th International Congress on Sound and Vibration Lisbon, Portugal 11–14 July 2005
  22. Osiński P. Deptuła A. Deptuła A.M. Analysis of the Gear Pump’s Acoustic Properties Taking into Account the Classification of Induction Trees Energies 2023 16 4460 10.3390/en16114460
  23. ISO 16902-1:2003 Hydraulic Fluid Power—Test Code for the Determination of Sound Power Levels of Pumps using Sound Intensity Techniques: Engineering Method—Part 1: Pumps ISO Geneva, Switzerland 2003
  24. Mitov A. Nedelchev K. Kralov I. Experimental Study of Sound Pressure Level in Hydraulic Power Unit with External Gear Pump Processes 2023 11 2399 10.3390/pr11082399
  25. Yoon Y. Park B.-H. Shim J. Han Y.-O. Hong B.-J. Yun S.-H. Numerical simulation of three-dimensional external gear pump using immersed solid method Appl. Therm. Eng. 2017 118 539 550 10.1016/j.applthermaleng.2017.03.014
  26. Corvaglia A. Ferrari A. Rundo M. Vento O. Three-dimensional model of an external gear pump with an experimental evaluation of the flow ripple Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021 235 1097 1105 10.1177/0954406220937043
  27. Frosina E. Senatore A. Rigosi M. Study of a high-pressure external gear pump with a computational fluid dynamic modeling approach Energies 2017 10 1113 10.3390/en10081113
  28. Močilan M. Husár Š. Labaj J. Žmindák M. Non-Stationary CFD Simulation of a Gear Pump Proceedings of the 21st International Polish-Slovak Conference “Machine Modeling and Simulations 2016” Hucisko, Poland 8–11 September 2017
  29. Jędraszczyk P. Fiebig W. CFD model of an external gear pump RESRB 2016: Proceedings of the 13th International Scientific Conference, Wrocław, Poland, 22–24 June 2016 Springer Berlin/Heidelberg, Germany 2017 221 231
  30. Castilla R. Gamez-Montero P.J. Del Campo D. Raush G. Garcia-Vilchez M. Codina E. Three-dimensional numerical simulation of an external gear pump with decompression slot and meshing contact point J. Fluids Eng. Trans. ASME 2015 137 041105 10.1115/1.4029223
  31. Corvaglia A. Rundo M. Casoli P. Lettini A. Evaluation of tooth space pressure and incomplete filling in external gear pumps by means of three-dimensional CFD simulations Energies 2021 14 342 10.3390/en14020342
  32. Ghionea I.G. Applied Methodology for Designing and Calculating a Family of Spur Gear Pumps Energies 2022 15 4266 10.3390/en15124266
  33. Torrent M. Gamez-Montero P.J. Codina E. Model of the Floating Bearing Bushing Movement in an External Gear Pump and the Relation to Its Parameterization Energies 2021 14 8553 10.3390/en14248553
  34. Strasser W. CFD Investigation of Gear Pump Mixing Proceedings of the ASME International Mechanical Engineering Congress and Exposition Orlando, FL, USA 5–11 November 2005
  35. Strasser W. CFD investigation of gear pump mixing using deforming/agglomerating mesh J. Fluids Eng. Trans. ASME 2007 129 476 484 10.1115/1.2436577
  36. Ghazanfarian J. Ghanbari D. Computational fluid dynamics investigation of turbulent flow inside a rotary double external gear pump J. Fluids Eng. Trans. ASME 2015 137 021101 10.1115/1.4028186
  37. Qi F. Dhar S. Nichani V.H. Srinivasan C. Wang D.M. Yang L. Bing Z. Yang J.J. A CFD study of an Electronic Hydraulic Power Steering Helical External Gear Pump: Model Development, Validation and Application SAE Int. J. Passeng. Cars—Mech. Syst. 2016 9 346 352 10.4271/2016-01-1376
  38. Li X. Zhang L. Zhang Y. Numerical Study on the Influence of Different Operating Conditions on Mixing Uniformity of the Helical Gear Pump Mixer Processes 2023 11 3223 10.3390/pr11113223
  39. Ouyang T. Mo X. Lu Y. Wang J. CFD-vibration coupled model for predicting cavitation in gear transmissions Int. J. Mech. Sci. 2022 225 107377 10.1016/j.ijmecsci.2022.107377
  40. Killedar J.S. CFD Analysis of Gear Pump Master’s Thesis Youngstown State University Youngstown, OH, USA 2005
  41. Heisler A.S. Moskwa J.J. Fronczak F.J. Simulated Helical Gear Pump Analysis using a New CFD Approach Proceedings of the ASME Fluids Engineering Division Summer Conference FEDSM2009 Vail, CO, USA 2–6 August 2009
  42. Labaj J. Husar S. Analysis of Gear Pump Designed for Manufacturing Processes Appl. Mech. Mater. 2015 803 163 172 10.4028/www.scientific.net/AMM.803.163
  43. Lee J.-H. Lee S.-W. Numerical Simulations of Cavitation Flow in Volumetric Gear Pump J. Korean Soc. Vis. 2011 9 28 34
  44. Del Campo D. Castilla R. Raush G.A. Gamez Montero P.J. Codina E. Numerical analysis of external gear pumps including cavitation J. Fluids Eng. Trans. ASME 2012 134 081105 10.1115/1.4007106
  45. Zhou W. Yu D. Wang Y. Shi J. Gan B. Research on the Fluid-Induced Excitation Characteristics of the Centrifugal Pump Considering the Compound Whirl Effect Facta Univ. Ser. Mech. Eng. 2023 21 223 10.22190/FUME210528065Z
  46. Bilalov R.A. Smetannikov O.Y. Numerical Study of the Hydrodynamics of an External Gear Pump J. Appl. Mech. Tech. Phys. 2022 63 1284 1293 10.1134/S0021894422070021
  47. Martínez J. Mesh Handling for the CFD Simulation of External Gear Pumps Positive Displacement Machines: Modern Design Innovations and Tools 1st ed. Sultan I. Phung T. Elsevier Amsterdam, The Netherlands 2019 345 368
  48. Ull A.R. Study of Mesh Deformation Features of an Open Source CFD Package and Application to a Gear Pump Simulation Enginyeria Aeronàutica, Universitat Politècnica De Catalunya Barcelona, Spain 2012
  49. Mucchi E. Dalpiaz G. Rivola A. Dynamic behavior of gear pumps: Effect of variations in operational and design parameters Meccanica 2011 46 1191 1212 10.1007/s11012-010-9376-y
  50. Marinaro G. Frosina E. Senatore A. A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps Energies 2021 14 471 10.3390/en14020471
  51. Adake D.G. Dhote N.D. Khond M.P. Experimentation and 2D Fluid Flow Simulation over an External Gear Pump J. Phys. Conf. Ser. 2023 2601 012029 10.1088/1742-6596/2601/1/012029
  52. Szwemin P. Fiebig W. The Influence of Radial and Axial Gaps on Volumetric Efficiency of External Gear Pumps Energies 2021 14 4468 10.3390/en14154468
  53. Cengel Y.A. Cimbala J.M. Fluid Mechanics: Fundamental and Applications McGraw-Hill New York, NY, USA 2013
  54. Ansys Fluent 12.0 Theory Guide Ansys Inc. Canonsburg, PA, USA 2009

Issue

Applied Sciences (Switzerland), vol. 14, 2024, , https://doi.org/10.3390/app14104299

Цитирания (Citation/s):
1. Yang J., Lee C.-H., Flow characteristics and factors affecting flow pulsation of external meshing herringbone gear pump, (2024) Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering - 2024 - в издания, индексирани в Scopus или Web of Science
2. Kosiba J., Tkáč Z., Jablonický J., Čurgaliová G., Tulík J., Halenár M., Laboratory Test of a Gear Hydraulic Pump during the Application of an Environmentally Friendly Hydraulic Fluid with Constant Pressure and Temperature, (2024) Lubricants, 12 (9) - 2024 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science