Autors: Stavrev, S., Ginchev, D. Title: Reinforcement Learning Techniques in Optimizing Energy Systems Keywords: energy systems; reinforcement learning; optimization; deep Abstract: Reinforcement learning (RL) techniques have emerged as powerful tools for optimizing energy systems, offering the potential to enhance efficiency, reliability, and sustainability. This review paper provides a comprehensive examination of the applications of RL in the field of energy system optimization, spanning various domains such as energy management, grid control, and renewable energy integration. Beginning with an overview of RL fundamentals, the paper explores recent advancements in RL algorithms and their adaptation to address the unique challenges of energy system optimization. Case studies and real-world applications demonstrate the efficacy of RL-based approaches in improving energy efficiency, reducing costs, and mitigating environmental impacts. Furthermore, the paper discusses future directions and challenges, including scalability, interpretability, and integration with domain knowledge. By synthesizing the latest research findings and identifying key areas for further i References Issue
|
Цитирания (Citation/s):
1. Wang, S., Luo, W., Yin, S., (...), Zhu, Y., Li, S. Interpretable State Estimation in Power Systems Based on the Kolmogorov–Arnold Networks, Electronics (Switzerland) 14(2),320 - 2025 - в издания, индексирани в Scopus
2. Three-Dimensional Fuzzy Reinforcement Learning Modeling for Nonlinear Distributed Parameter Systems, Zhang, X., Yan, R., Zhou, G., Wang, L., Wang, B., Electronics (Switzerland) 13(21),4217 - 2024 - в издания, индексирани в Scopus и/или Web of Science
3. Zangato, T., Osmani, A., Alizadeh, P., Enhancing Decision-Making in Energy Management Systems Through Action-Independent Dynamics Learning, Frontiers in Artificial Intelligence and Applications, 392, pp. 4571-4578 - 2024 - в издания, индексирани в Scopus и/или Web of Science
4. Suanpang, P., Jamjuntr, P., Enhanced Decision Making in Smart Grid Management by Optimizing Adaptive Multi-Agent Reinforcement Learning with Vehicle-to-Grid Systems, Decision Making: Applications in Management and Engineering, 7(1), pp. 494-530 - 2024 - в издания, индексирани в Scopus и/или Web of Science
5. Vysotska, V., Lytvyn, V., Vladov, S., Vasylenko, V., Kryshan, O., The optimal controller parametric synthesis using variational calculus for a dynamic system general mathematical model, CEUR Workshop Proceedings, 3896, pp. 217-234 - 2024 - в издания, индексирани в Scopus и/или Web of Science
6. Xie H., Song G., Shi Z., Peng L., Feng D., Song X., Stable energy management for highway electric vehicle charging based on reinforcement learning, 2025, Applied Energy, issue 0, vol. 389, DOI 10.1016/j.apenergy.2025.125541, issn 03062619 - 2025 - в издания, индексирани в Scopus
7. Rajaperumal T.A., Columbus C.C., Transforming the electrical grid: the role of AI in advancing smart, sustainable, and secure energy systems, 2025, Energy Informatics, issue 1, vol. 8, DOI 10.1186/s42162-024-00461-w, eissn 25208942 - 2025 - в издания, индексирани в Scopus
Вид: статия в списание, публикация в издание с импакт фактор, индексирана в Scopus