Autors: Stavrev, S., Ginchev, D. Title: Reinforcement Learning Techniques in Optimizing Energy Systems Keywords: energy systems; reinforcement learning; optimization; deep Abstract: Reinforcement learning (RL) techniques have emerged as powerful tools for optimizing energy systems, offering the potential to enhance efficiency, reliability, and sustainability. This review paper provides a comprehensive examination of the applications of RL in the field of energy system optimization, spanning various domains such as energy management, grid control, and renewable energy integration. Beginning with an overview of RL fundamentals, the paper explores recent advancements in RL algorithms and their adaptation to address the unique challenges of energy system optimization. Case studies and real-world applications demonstrate the efficacy of RL-based approaches in improving energy efficiency, reducing costs, and mitigating environmental impacts. Furthermore, the paper discusses future directions and challenges, including scalability, interpretability, and integration with domain knowledge. By synthesizing the latest research findings and identifying key areas for further i References Issue
|
Цитирания (Citation/s):
1. Wang, S., Luo, W., Yin, S., (...), Zhu, Y., Li, S. Interpretable State Estimation in Power Systems Based on the Kolmogorov–Arnold Networks, Electronics (Switzerland) 14(2),320 - 2025 - в издания, индексирани в Scopus или Web of Science
2. Three-Dimensional Fuzzy Reinforcement Learning Modeling for Nonlinear Distributed Parameter Systems, Zhang, X., Yan, R., Zhou, G., Wang, L., Wang, B., Electronics (Switzerland) 13(21),4217 - 2024 - в издания, индексирани в Scopus или Web of Science
3. Zangato, T., Osmani, A., Alizadeh, P., Enhancing Decision-Making in Energy Management Systems Through Action-Independent Dynamics Learning, Frontiers in Artificial Intelligence and Applications, 392, pp. 4571-4578 - 2024 - в издания, индексирани в Scopus или Web of Science
4. Suanpang, P., Jamjuntr, P., Enhanced Decision Making in Smart Grid Management by Optimizing Adaptive Multi-Agent Reinforcement Learning with Vehicle-to-Grid Systems, Decision Making: Applications in Management and Engineering, 7(1), pp. 494-530 - 2024 - в издания, индексирани в Scopus или Web of Science
5. Vysotska, V., Lytvyn, V., Vladov, S., Vasylenko, V., Kryshan, O., The optimal controller parametric synthesis using variational calculus for a dynamic system general mathematical model, CEUR Workshop Proceedings, 3896, pp. 217-234 - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, индексирана в Scopus