Autors: Zapryanov, G. S., Nikolova, I. N., Dobromira Ivanova.
Title: Automatic White Balance Algorithms for Digital Still Cameras – a Comparative Study
Keywords: Automatic White Balance; Digital Photography; Color

Abstract: Automatic white balance is an important function of digital still cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall color cast in the final image. The goal of automatic white balancing is to estimate accurately the color of the overall scene illumination and to make the image look as if is taken under canonical light. This article discusses some of the basic white balance algorithms, making a comparison between them, and proposes a modification of one of the methods. For comparison purposes, test images are used, taken at different settings of white balance of digital still camera, various color temperatures of the scenes, and under six calibrated illumination environments.

References

    Issue

    Information Technologies and Control, issue 1, pp. 16-22, 2012, Bulgaria, ISBN ISSN 1312-2622

    Цитирания (Citation/s):
    1. . Janczyk, K., Neumann, T. and Rumiński, J., 2019, June, „The influence of image masks definition on segmentation results of histopathological images using convolutional neural network“. In 2019 12th International Conference on Human System Interaction (HSI) (pp. 47-53). - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Chen, S. and Wei, M., 2019. “LED Illumination and Color Appearance of White-Balanced Images”. LEUKOS, The Journal of the Illuminating Engineering Society pp.1-13, https://doi.org/10.1080/15502724.2018.1533409. - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Chen, S. and Wei, M., 2018. „Impact of fluorescent whitening agent excitation on White Balance Algorithms“, Color Research & Application, 43(5), pp.685-696, https://doi.org/10.1002/col.22233. - 2018 - в издания, индексирани в Scopus или Web of Science
    4. Chen, S., and Minchen Wei. "White Balance under White-light LED Illumination." In Color and Imaging Conference, vol. 2018, no. 1, pp. 140-144. Society for Imaging Science and Technology, 2018, https://doi.org/10.2352/ISSN.2169-2629.2018.26.140. - 2018 - в издания, индексирани в Scopus или Web of Science
    5. Hänsch, R., Olaf Hellwich, Andreas Ley, and Oleksandra Bielova. "A Digital Image Processing Pipeline for Modelling of Realistic Noise in Synthetic Images." In 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops 2019). Computer Vision Foundation, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Pavlova, P.E., 2019, May. „Applied Methodology for Dynamic Estimation of Visibility Parameters: colors“, In 2019 X National Conference with International Participation (ELECTRONICA) (pp. 1-4). IEEE. - 2019 - в издания, индексирани в Scopus или Web of Science
    7. Ivashchenko, M.V., Okhrymchuk, D.D. and Lyushenko, L.A., 2019. “Integer Norm for Difference Assessment of the Frame Elements Considering the White Balance”. ISSN 2706-8145, Control Systems and Computers, 2019, № 4, pp. 27-34, https://doi.org/10.15407/usim.2019.04.027. - 2019 - в издания, индексирани в Scopus или Web of Science
    8. Urban, J., "Automatic calibration, acquisition, and analysis for color experiments." In International Work-Conference on Bioinformatics and Biomedical Engineering, pp. 298-309. Springer, Cham, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Ray, L., and M. Kulkarni. "Computation and correction of dynamic white balance in the automotive cameras." In 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 1-6. IEEE, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    10. Janczyk, K., Tomasz Neumann, and Jacek Rumiński. "The influence of image masks definition on segmentation results of histopathological images using convolutional neural network." In 2019 12th International Conference on Human System Interaction (HSI), pp. 47-53. IEEE, 2019, https://doi.org/10.1109/hsi47298.2019.8942600. - 2019 - в издания, индексирани в Scopus или Web of Science
    11. Punko, U. V., N. A. Volorova, and V. S. Prikhodko. "Reed Sternberg Cell Recognition in Hodgkin’s Lymphoma." Pattern Recognition and Image Analysis 30, no. 1 (2020): 27-33, https://doi.org/10.1134/S1054661820010125. - 2020 - в издания, индексирани в Scopus или Web of Science
    12. Alby, E. and Dellarovere, T., 2023. „Creation of a 3d Reference Model of AN Archaeological Site from a Large Set of Ground and Uav Images“. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp.19-25. - 2023 - в издания, индексирани в Scopus или Web of Science
    13. Bishop, D. and Chase, J.G., 2023. „Development of a Low-Cost Luminance Imaging Device with Minimal Equipment Calibration Procedures for Absolute and Relative Luminance. Buildings“, p.1266, https://doi.org/10.3390/buildings13051266. - 2023 - в издания, индексирани в Scopus или Web of Science
    14. da Silva, M.H.M., da Silva, J.V.S., Arrais, R.R., Neto, W.B.G.D.A., Lopes, L.T., Bileki, G.A., Lima, I.O., Rondon, L.B., de Souza, B.M., Regazio, M.C. and Dalapicola, R.C., 2023. “Survey on software ISP methods based on Deep Learning”, arXiv preprint arXiv:2305.11994. - 2023 - в издания, индексирани в Scopus или Web of Science
    15. Alby, E. and Dellarovere, T., 2023. Creation of a 3d Reference Model of AN Archaeological Site from a Large Set of Ground and Uav Images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp.19-25. - 2023 - в издания, индексирани в Scopus или Web of Science
    16. Dong, Y., 2022. JOIG A Comparative Analysis of Machine Learning Algorithms for Autonomous Face Mask Detection. Journal of Image and Graphics, doi: 10.18178/joig.10.3.122-126 - 2022 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в реферирано издание