Autors: Pavlatos, C., Makris, E., Fotis, G., Vita, V., Mladenov, V. M.
Title: Enhancing Electrical Load Prediction Using a Bidirectional LSTM Neural Network
Keywords: forecastingelectricitydemand;bidirectionalLSTM;short-termpre

Abstract: Preciseanticipationofelectricaldemandholdscrucialimportancefortheoptimaloperation ofpowersystemsandtheeffectivemanagementofenergymarketswithinthedomainofenergy planning. Thisstudybuildsonpreviousresearchfocusedontheapplicationofartificialneural networkstoachieveaccurateelectricalloadforecasting. Inthispaper,animprovedmethodology isintroduced,centeringaroundbidirectionalLongShort-TermMemory(LSTM)neuralnetworks (NN).TheprimaryaimoftheproposedbidirectionalLSTMnetworkistoenhancepredictiveperformancebycapturingintricatetemporalpatternsandinterdependencieswithintimeseriesdata. Whileconventionalfeed-forwardneuralnetworksaresuitableforstandalonedatapoints,energy consumptiondataarecharacterizedbysequentialdependencies,necessitatingtheincorporation ofmemory-basedconcepts. ThebidirectionalLSTMmodel isdesignedtofurnishtheprediction frameworkwiththecapacitytoassimilateandleverageinformationfrombothprecedingandforthcomingtimesteps.Thisaugmentationsignificantlybolsterspredictivecapabilitiesbyencapsu

References

    Issue

    MDPI Electronics, vol. 12, issue 22, pp. 1-13, 2023, Switzerland, MDPI, https://doi.org/10.3390/electronics12224652

    Цитирания (Citation/s):
    1. Fotis, G., Sijakovic, N., Zarkovic, M., Ristic, V., Terzic, A., Vita, V., Zafeiropoulou, M., Zoulias, E. and Maris, T.I., 2023. „Forecasting Wind and Solar Energy Production in the Greek Power System using ANN Models,“ WSEAS Transactions on Power Systems, vol. 18, pp. 373-391. ISSN 17905060, DOI 10.37394/232016.2023.18.38 (Scopus, Google Scholar) SJR 0.162. - 2023 - в издания, индексирани в Scopus или Web of Science
    2. Nasab, M.A., Alizadeh, M., Nasimov, R., Zand, M., Nasab, M.A. and Padmanaban, S., 2024. “Planning with the electricity market One day ahead for a smart home connected to the RES by the MILP method,” Renewable Energy Focus, vol. 50, ISSN 17550084, DOI 10.1016/j.ref.2024.100606 pp. 1-17, (Web of Science, Scopus, Google Scholar) SJR 0.944, IF 4.4 - 2024 - в издания, индексирани в Scopus или Web of Science
    3. Dong, Z., Kong, J., Yan, W., Wang, X. and Li, H., 2024. “Multivariable High-Dimension Time-Series Prediction in SIoT via Adaptive Dual-Graph-Attention Encoder-Decoder With Global Bayesian Optimization,” IEEE Internet of Things Journal. ISSN 23274662, DOI 10.1109/JIOT.2024.3418993, pp. 1-1 (Web of Science, Scopus, Google Scholar) SJR 3.382 - 2024 - в издания, индексирани в Scopus или Web of Science
    4. Karthick, A., Shankar, R. and Dharmaraj, G., 2024. “Energy forecasting of the building integrated photovoltaic system based on deep learning Dragonfly-firefly algorithm,” Energy, pp. 1-8, ISSN 03605442, DOI 10.1016/j.energy.2024.132926 (Web of Science, Scopus, Google Scholar) IF 9.0, SJR 2.11 - 2024 - в издания, индексирани в Scopus или Web of Science
    5. Li, F., Liu, S., Wang, T. and Liu, R., 2024. “Optimal planning for integrated electricity and heat systems using CNN-BiLSTM-attention network forecasts,” Energy, vol. 309, pp. 1-13, ISSN 03605442, DOI 10.1016/j.energy.2024.133042 (Web of Science, Scopus, Google Scholar) IF 9.0, SJR 2.11 - 2024 - в издания, индексирани в Scopus или Web of Science
    6. Debnath, K.B., Jenkins, D.P., Patidar, S. and Peacock, A.D., 2024. „Remote work might unlock solar PV's potential of cracking the ‘Duck Curve’“ Applied Energy, vol. 367, pp. 1-17, ISSN 03062619, DOI 10.1016/j.apenergy.2024.123378 (Web of Science, Scopus, Google Scholar) IF 10.1, SJR 2.82 - 2024 - в издания, индексирани в Scopus или Web of Science
    7. Jin, X., Wang, S., Hu, Q., Zhang, Y., Qiu, P., Liu, Y. and Dou, X., 2024. „Estimating air conditioning energy consumption of residential buildings using hourly smart meter data,“ Journal of Building Engineering, vol. 97, pp. 1-18, ISSN 23527102, DOI 10.1016/j.jobe.2024.110729 (Web of Science, Scopus, Google Scholar) SJR 1.397, IF 6.7 - 2024 - в издания, индексирани в Scopus или Web of Science
    8. Kilinc, H.C., Apak, S., Ozkan, F., Ergin, M.E. and Yurtsever, A., 2024. „Multimodal Fusion of Optimized GRU–LSTM with Self-Attention Layer for Hydrological Time Series Forecasting,“ Water Resources Management, pp.1-18. ISSN 09204741, DOI 10.1007/s11269-024-03943-4 (Web of Science, Scopus, Google Scholar) IF 4.1, SJR 0.898 - 2024 - в издания, индексирани в Scopus или Web of Science
    9. Wan, S., Wang, Y., Zhang, Y., Zhu, B., Huang, H. and Liu, J., 2024. „Fusion of Hierarchical Optimization Models for Accurate Power Load Prediction,“ Sustainability, vol. 16, issue (16), pp. 1-23, ISSN 20711050, DOI 10.3390/su16166903 (Web of Science, Scopus, Google Scholar) IF 3.6, SJR 0.672 - 2024 - в издания, индексирани в Scopus или Web of Science
    10. Alshahrani, R., Rizwan, A., Alomar, M.A. and Fotis, G., 2024. „IoT-Based Sustainable Energy Solutions for Small and Medium Enterprises (SMEs),“ Energies, vol. 17, issue (16), pp. 1-21, https://doi.org/10.3390/en17164144 (Web of Science, Scopus, Google Scholar) IF 3.0, SJR 0.651 - 2024 - в издания, индексирани в Scopus или Web of Science
    11. Alkhawaji, R.N., Serbaya, S.H., Zahran, S., Vita, V., Pappas, S., Rizwan, A. and Fotis, G., 2024. „Enhanced Coconut Yield Prediction Using Internet of Things and Deep Learning: A Bi-Directional Long Short-Term Memory Lévy Flight and Seagull Optimization Algorithm Approach,“ Applied Sciences, vol. 14, issue (17), pp. 1-20, ISSN 20763417, DOI 10.3390/app14177516 (Web of Science, Scopus, Google Scholar) SJR 0.508, IF 2.5 - 2024 - в издания, индексирани в Scopus или Web of Science
    12. Chen, J., Xie, Y., Chen, K., Zhen, M. and Hu, X., 2025. „QRNet: Query-based reparameterization net for real-time detection of power adapter surface defects,” Measurement, vol. 239, ISSN 02632241, DOI 10.1016/j.measurement.2024.115420, pp. 1-12, (Web of Science, Scopus, Google Scholar) SJR 1.181, IF 5.2 - 2024 - в издания, индексирани в Scopus или Web of Science
    13. Jin, Y., Li, Y., He, B., Yang, X. and Zheng, L., 2024. “Mass estimation of tractor-semitrailer systems: An approach of dynamics and data fusion-driven in real environments,” Measurement, vol. 238, pp. 1-18, ISSN 02632241, DOI 10.1016/j.measurement.2024.115367 (Web of Science, Scopus, Google Scholar) IF 5.2, SJR 1.181 - 2024 - в издания, индексирани в Scopus или Web of Science
    14. Goyal, H.R., Almusawi, M., Otero-Potosi, S., Varshney, N., Sharma, V. and Rao, A.K., 2024, May. “Predictive Maintenance in Smart Grids with Long Short-Term Memory Networks (LSTM),” In 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) (pp. 1370-1375). IEEE. (Scopus, Google Scholar) - 2024 - в издания, индексирани в Scopus или Web of Science
    15. Birdal, R.G., 2024. “Air pollution impact on forecasting electricity demand utilizing CNN-PSO hyper-parameter optimization,” Environmental Research Communications, vol. 6, issue (5), ISSN 25157620, DOI 10.1088/2515-7620/ad484b pp. 1-12, (Web of Science, Scopus, Google Scholar) IF 3.0, SJR 0.78 - 2024 - в издания, индексирани в Scopus или Web of Science
    16. Palma, G., Chengalipunath, E.S.J. and Rizzo, A., 2024. “Time Series Forecasting for Energy Management: Neural Circuit Policies (NCPs) vs. Long Short-Term Memory (LSTM) Networks,” Electronics, vol. 13, issue (18), pp. 1-27, https://doi.org/10.3390/electronics13183641 (Web of Science, Scopus, Google Scholar) IF 2.6, SJR 0.644 - 2024 - в издания, индексирани в Scopus или Web of Science
    17. Liu, J., Wang, Y., Zhou, Y., Shang, C. and Huang, D., 2024. “Fast Trend Extraction of Industrial Process Data Based on Deep Bidirectional LSTM,” IFAC-PapersOnLine, vol. 58, issue (4), ISSN 24058963, DOI 10.1016/j.ifacol.2024.07.265, pp.484-489. (Scopus, Google Scholar) SJR 0.365 - 2024 - в издания, индексирани в Scopus или Web of Science
    18. Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V. and Borodulin, A., 2024. “Applications of Long Short-Term Memory (LSTM) Networks in Polymeric Sciences: A Review,” Polymers, vol. 16, issue (18), pp. 1-44, (Web of Science, Scopus, Google Scholar) SJR 0.8, IF 4.7 - 2024 - в издания, индексирани в Scopus или Web of Science
    19. Gong, R., Wei, Z., Qin, Y., Liu, T. and Xu, J., 2024. “Short-Term Electrical Load Forecasting Based on IDBO-PTCN-GRU Model,” Energies, vol. 17, issue (18), pp. 1-24, ISSN 19961073, DOI 10.3390/en17184667 (Web of Science, Scopus, Google Scholar) IF 3.0, SJR 0.651 - 2024 - в издания, индексирани в Scopus или Web of Science
    20. Kamalov, F., Zicmane, I., Safaraliev, M., Smail, L., Senyuk, M. and Matrenin, P., 2024. “Attention-Based Load Forecasting with Bidirectional Finetuning,” Energies, vol. 17, issue (18), pp. 1-16, ISSN 19961073, DOI 10.3390/en17184699 (Web of Science, Scopus, Google Scholar) IF 3.0, SJR 0.651 - 2024 - в издания, индексирани в Scopus или Web of Science
    21. Fotis, G., 2024. “An improved arithmetic method for determining the optimum placement and size of EV charging stations,” Computers and Electrical Engineering, vol. 120, pp. 1-16, ISSN 00457906, DOI 10.1016/j.compeleceng.2024.109840 (Scopus, Google Scholar) SJR 1.041, IF 4.0 - 2024 - в издания, индексирани в Scopus или Web of Science
    22. Baniya, B. and Giurco, D., 2024. “Cost-effective and optimal pathways to selecting building microgrid components–The resilient, reliable, and flexible energy system under changing climate conditions,” Energy and Buildings, pp. 1-16, ISSN 03787788, DOI 10.1016/j.enbuild.2024.114896 (Web of Science, Scopus, Google Scholar) IF 6.7, SJR 1.632 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science