Autors: Gieva, E. E., Rusev, R. P., Radonov, R. I., Takov, T. B., Hristov, M. H.
Title: Verilog-A Behavioral Model of Hydrogen Bonding Network
Keywords: Hydrogen bonding network, microelectronic circuits, proton t

Abstract: Information processing requires new approaches and circuits. Novel algorithms and devices are needed to emulate the operation of bioobjects such as DNA, neuron networks, and proteins with their hydrogen bonding networks. In the present paper a circuit to imitate the proton transfer in hydrogen bonding network is developed. It is modeled in Cadence CAD system using Verilog-A language which is compared to already investigated Matlab model. Based on the behavioral model a DC and transient analyses are performed. The results show the modeled circuit is similar to a current mirror or an amplifier.

References

  1. Remus, W., O`Connor, M., “Neural network time-series forecasting”, in Armstrong, J . (Ed.) “Principles of forecasting: a handbook for researchers and practitioners”, Kluwer Academic Publishers, 2001, pp. 245-256.
  2. Feng Zhou, Andreas Windemuth, and Klaus Schulten. Molecular dynamics investigation of the proton pump cycle of Bacteriorhodopsin. Biochemistry, 32(9)2291-2306, 1993.
  3. R. Rusev, B. Atanasov, T. Takov, M. Hristov, “Microelectronics Models of Protein Hydrogen Bonds,” Elektrotechnica & Elektronica (E+E) Journal, ISBN 0861-4717
  4. Markus A., and V. Helms. 2001. Compact parameter set for fast estimation of proton transfer rates. J. Phys. Chem. 114: 3
  5. R. Rusev, G. Angelov, T. Takov, M. Hristov Analogy Between Hydrogen Bonding Network and Microelectronic Circuit, MIXDES 2009, Proceedings of 16th international conference “Mixed Design of Integrated Circuits and Systems”, June 25-27, 2009, Lódz, Poland, pp. 402-405, ISBN 978-83-928756-0-4.
  6. Matlab website http://www.mathworks.com
  7. Cadence website http://cadence.com
  8. D. Fitzpatrick, I. Miller, Analog Behavioral Modeling with the Verilog-A Language, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2003, pp 41-86, ISBN: 0- 7923-8044-4

Issue

Annual Journal of Electronics, vol. 5, book 2, pp. 128 - 131, 2011, Bulgaria, ISSN 1313-1842

Цитирания (Citation/s):
1. K.P. Sridhar, B. Vignesh, S. Saravanan, M. Lavanya and V. Vaithiyanathan, Design and Implementation of Neural Network Based circuits for VLSI testing, World Applied Sciences Journal 29 (Data Mining and Soft Computing Techniques) 2014, pp. 113-117, ISSN 1818-4952 - 2014 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. A. Basu, P. Bisaws, S. Ghosh, D. Datta,. Reconfigurable Artificial Neural Networks, International Journal of Computer Applications (0975 – 8887), 2017, Volume 179 – No.6, pp. 5 – 8, ISBN: 973-93-80897-81-7 - 2017 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

Вид: пленарен доклад в международен форум