Оригинал (Original)
Автори: Стамов, Т. Г., Стамов, Г. Т., Stamova I.
Заглавие: Fractional-Order Impulsive Delayed Reaction-Diffusion Gene Regulatory Networks: Almost Periodic Solutions
Ключови думи: gene regulatory networks; fractional order; time delay; reac

Абстракт: The paper is oriented on the existence of almost periodic solutions of factional-order impulsive delayed reaction-diffusion gene regulatory networks. Caputo type fractional-order derivatives and impulsive disturbances at not fixed instants of time are considered. New almost periodic and perfect Mittag–Leffler stability criteria are proposed. Lyapunov’s like impulsive functions, the properties of the fractional derivatives and comparison principle are the main tools in the investigation. Illustrative examples are also presented to demonstrate the proposed criteria. Our results contribute to the development of qualitative the theory of fractional-order gene regulatory networks.

Библиография

    Издание

    Fractal and Fractional, том 7, брой 5, 2023, Швейцария, MDPI
    Autors: Stamov, T. G., Stamov, G. T., Stamova I.
    Title: Fractional-Order Impulsive Delayed Reaction-Diffusion Gene Regulatory Networks: Almost Periodic Solutions
    Keywords: gene regulatory networks; fractional order; time delay; reaction-diffusion terms; variable impulses; almost periodicity

    Abstract: The paper is oriented on the existence of almost periodic solutions of factional-order impulsive delayed reaction-diffusion gene regulatory networks. Caputo type fractional-order derivatives and impulsive disturbances at not fixed instants of time are considered. New almost periodic and perfect Mittag–Leffler stability criteria are proposed. Lyapunov’s like impulsive functions, the properties of the fractional derivatives and comparison principle are the main tools in the investigation. Illustrative examples are also presented to demonstrate the proposed criteria. Our results contribute to the development of qualitative the theory of fractional-order gene regulatory networks.

    References

      Issue

      Fractal and Fractional, vol. 7, issue 5, 2023, Switzerland, MDPI

      Цитирания (Citation/s):
      1. Multiple Mittag–Leffler Stability of Almost Periodic Solutions for Fractional-Order Delayed Neural Networks: Distributed Optimization Approach - 2023 - в издания, индексирани в Scopus
      2. Impulsive Controllers Design for the Practical Stability Analysis of Gene Regulatory Networks with Distributed Delays - 2023 - в издания, индексирани в Scopus и/или Web of Science
      3. Asymptotic stability analysis and stabilization control of fractional-order vehicle suspension system with time delay - 2023 - в издания, индексирани в Scopus и/или Web of Science
      4. Fractional Differential Equations with Impulsive Effects - 2024 - в издания, индексирани в Scopus и/или Web of Science
      5. Novel Unified Stability Criterion For Fractional-Order Time Delay Systems With Strong Resistance To Fractional Orders - 2024 - в издания, индексирани в Scopus и/или Web of Science
      6. Bingi K., Bhukya R., Kasi V.R., Fractional-Order Activation Functions for Neural Networks: Case Studies on Forecasting Wind Turbines’ Generated Power, 2025, Studies in Systems Decision and Control, issue 0, vol. 588, pp. 1-238, DOI 10.1007/978-3-031-88091-9, issn 21984182, eissn 21984190 - 2025 - в издания, индексирани в Scopus
      7. Wang Y., Liu Y., Zhang H., Zhao N., Resilient event-triggering state estimation for reaction-diffusion genetic regulatory networks, 2025, Asian Journal of Control, issue 0, DOI 10.1002/asjc.3835, issn 15618625, eissn 19346093 - 2025 - в издания, индексирани в Scopus
      8. Logeswari S., Sriraman R., Impulsive gene regulatory networks with distributed delays: a global exponential stability approach, 2025, International Journal of Information Technology Singapore, issue 5, vol. 17, pp. 3055-3063, DOI 10.1007/s41870-025-02515-y, issn 25112104, eissn 25112112 - 2025 - в издания, индексирани в Scopus
      9. Alqurayqiri S.O., Alghanmi M.M., A STUDY OF NONLINEAR IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY, 2025, Journal of Nonlinear Functional Analysis, issue 0, vol. 2025, DOI 10.23952/jnfa.2025.7, eissn 2052532X - 2025 - в издания, индексирани в Scopus
      10. Gokulakrishnan V., Srinivasan R., Ali M.S., Omer A.S.A., New results on finite-time synchronisation of fractional-order fuzzy reaction-diffusion gene regulatory networks with time-varying delays: an adaptive boundary control approach, 2025, International Journal of Systems Science, issue 0, DOI 10.1080/00207721.2025.2504058, issn 00207721, eissn 14645319 - 2025 - в издания, индексирани в Scopus

      Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus