Autors: Asimopoulos, D.C., Radoglou-Grammatikis, P., Makris, I., Mladenov, V. M., Psannis, K.E., Goudos, S., Sarigiannidis, P.
Title: Breaching the Defense: Investigating FGSM and CTGAN Adversarial Attacks on IEC 60870-5-104 AI-enabled Intrusion Detection Systems
Keywords: Adversarial Attacks; Artificial Intelligence; Cybersecurity;

Abstract: In the digital age of the hyper-connected Critical Infrastructures (CIs), the role of the smart electrical grid is crucial, providing several benefits, such as improved grid resilience, efficient energy distribution and smart load and response management. However, despite the several advantages, the rapid evolution of the heterogeneous technologies involved in the smart electrical grid increases the attack surface. In this paper, we focus first our attention on how Artificial Intelligence (AI) can be used to protect the smart electrical grid in terms of detecting efficiently potential cyberattacks and anomalies. Secondly, we investigate how AI can be used to trick AI-enabled detection services, thus resulting in false alarms. In particular, we emphasise on cyberattacks against IEC 60870-5-104, an industrial communication protocol which is widely used in the energy domain. Therefore, a relevant AI-powered Intrusion Detection System (IDS) is provided, utilising strong Machine Learning (

References

    Issue

    18th International Conference on Availability, Reliability and Security, pp. 1-8, 2023, Italy, ARES, DOI 10.1145/3600160.3605163

    Цитирания (Citation/s):
    1. Siniosoglou, I., Asimopoulos, D., Argyriou, V., Lagkas, T., Lytos, A., Moscholios, I.D., Goudos, S.K. and Sarigiannidis, P., 2024, March. “Enhancing Text Anonymisation: A Study on CRF, LSTM, and ELMo for Advanced Entity Recognition,” In 2024 Panhellenic Conference on Electronics & Telecommunications (PACET) (pp. 1-6). IEEE. DOI: 10.1109/PACET60398.2024.10497084 (Google Scholar) - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    2. Bouzinis, P.S., Radoglou-Grammatikis, P., Makris, I., Lagkas, T., Argyriou, V., Papadopoulos, G.T., Sarigiannidis, P. and Karagiannidis, G.K., 2024. “StatAvg: Mitigating Data Heterogeneity in Federated Learning for Intrusion Detection Systems,” arXiv preprint arXiv:2405.13062. pp. 1-10, https://doi.org/10.48550/arXiv.2405.13062 (Google Scholar) - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    3. Asimopoulos, D., Siniosoglou, I., Argyriou, V., Goudos, S.K., Psannis, K.E., Karditsioti, N., Saoulidis, T. and Sarigiannidis, P., 2024. “Evaluating the Efficacy of AI Techniques in Textual Anonymization: A Comparative Study,” 7th International Balkan Conference on Communications and Networking, BalkanCom 2024, arXiv preprint arXiv:2405.06709. ISBN 979-835036595-5, DOI 10.1109/BalkanCom61808.2024.10557182, pp. 242 - 246 (Web of Science, Scopus, Google Scholar) - 2024 - в издания, индексирани в Scopus или Web of Science
    4. Sinha, H., 2024, “The Identification of Network Intrusions with Generative Artificial Intelligence Approach for Cybersecurity,” JOURNAL OF Web Applications and Cyber Security, vol. 2, issue (2), e-ISSN: 2584-0908, https://doi.org/10.48001/JoWACS.2024.2220-29, pp. 20-29, (Google Scholar) - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Sampedro, G.A., Ojo, S., Krichen, M., Alamro, M.A., Mihoub, A. and Karovic, V., 2024. “Defending AI Models Against Adversarial Attacks in Smart Grids Using Deep Learning,” IEEE Access. ISSN 21693536, DOI 10.1109/ACCESS.2024.3473531, pp. 157408 - 157417 (Web of Science, Scopus, Google Scholar) SJR 0.96, IF 3.4 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus