Autors: Syed, S.N., Lazaridis, P.I., Khan, F.A., Ahmed, Q.Z., Hafeez, M., Ivanov, A. S., Poulkov, V. K., Zaharis, Z.D. Title: Deep Neural Networks for Spectrum Sensing: A Review Keywords: 6G; Autoencoders; cognitive radio Abstract: As we advance towards 6G communication systems, the number of network devices continues to increase resulting in spectrum scarcity. With the help of Spectrum Sensing (SS), Cognitive Radio (CR) exploits the frequency spectrum dynamically by detecting and transmitting in underutilized bands. The performance of 6G networks can be enhanced by utilizing Deep Neural Networks (DNNs) to perform SS. This paper provides a detailed survey of several Deep Learning (DL) algorithms used for SS by classifying them as Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, combined CNN-LSTM architectures and Autoencoders (AEs). The works are discussed in terms of the input provided to the DL algorithm, data acquisition technique used, data pre-processing technique used, architecture of each algorithm, evaluation metrics used, results obtained, and comparison with standard SS detectors. References Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Zhang, Y., Luo, Z., "A Review of Research on Spectrum Sensing Based on Deep Learning", Electronics (Switzerland), vol. 12, no. 21, 2023, DOI: 10.3390/electronics12214514. - 2023 - в издания, индексирани в Scopus или Web of Science
2. Kayraklik S.; Yildirim I.; Basar E.; Hokelek I.; Gorcin A., "Practical Implementation of RIS-Aided Spectrum Sensing: A Deep-Learning-Based Solution", IEEE Systems Journal, vol. 18, no. 2, pp. 1481-1488, 2024, DOI: 10.1109/JSYST.2024.3376986. - 2024 - в издания, индексирани в Scopus или Web of Science
3. Volgushev D.; Fokin G., "Integrated Communication, Localization, Sensing and Synchronization in 6G Cognitive Wireless Networks", 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications, SYNCHROINFO 2024 - Conference Proceedings, 2024, DOI: 10.1109/SYNCHROINFO61835.2024.10617616. - 2024 - в издания, индексирани в Scopus или Web of Science
4. Wang A.; Zhu T.; Meng Q., "Spectrum Sensing Method Based on STFT-RADN in Cognitive Radio Networks", Sensors, vol. 24, no. 17, 2024, DOI: 10.3390/s24175792. - 2024 - в издания, индексирани в Scopus или Web of Science
5. El-haryqy N.; Madini Z.; Zouine Y., "A review of deep learning techniques for enhancing spectrum sensing and prediction in cognitive radio systems: approaches, datasets, and challenges", International Journal of Computers and Applications, 2024, DOI: 10.1080/1206212X.2024.2414042. - 2024 - в издания, индексирани в Scopus или Web of Science
6. Ji C.; Zhou X., "Signal as Point: Deep Learning Signal Detector on Time Domain", Proceedings - 2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2024, pp. 130-137, 2024, DOI: 10.1109/WoWMoM60985.2024.00034. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science