Autors: Tonchev, K., Ivanov, A. S., Neshov, N. N., Manolova, A. H., Poulkov, V. K. Title: Learning Graph Convolutional Neural Networks to Predict Radio Environment Maps Keywords: Graph convolutional neural networks; Radio Environment Maps Abstract: One of the promising 5G advancements is the implementation of Ultra Dense Networks (UDN) opening possibilities for the implementation of new applications and services. However, the densification of Access Points (APs) leads to an increase in the interchannel interference, more complicated and inefficient spectrum management and utilization, and in the case of private networks the possibly for severe Quality of Service (QoS) degradation. One of the potential solutions is the implementation and utilization of Radio Environment Maps (REM) for APs location planning and spectrum and resource allocation. Building detailed REMs is a challenging task as the measurement of the signal strength in a big number of points in a given space is tedious and, in some cases, a challenging and even an impossible task. References Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Chaves-Villota, A., Viteri-Mera, C.A., "DeepREM: Deep-Learning-Based Radio Environment Map Estimation From Sparse Measurements", IEEE Access, vol. 11, pp. 48697-48714, 2023, DOI: 10.1109/ACCESS.2023.3277248. - 2023 - в издания, индексирани в Scopus или Web of Science
2. Tan, Z., Xiao, L., Tang, X., Zhao, M., Li, Y., "A FL-Based Radio Map Reconstruction Approach for UAV-Aided Wireless Networks", Electronics (Switzerland), vol. 12, no. 13, 2023, DOI: 10.3390/electronics12132817. - 2023 - в издания, индексирани в Scopus или Web of Science
3. He S.; Zhu L.; Wang L.; Zeng W.; Qin Z., "Fine-grained spectrum map inference: A novel approach based on deep residual network", IET Communications, vol. 18, no. 16, pp. 925-937, 2024, DOI: 10.1049/cmu2.12786. - 2024 - в издания, индексирани в Scopus или Web of Science
4. Huang Y.; Hou Y.; Zhu Q.; Chen X.; Chen L., "Towards the Metaverse: Distributed Radio Map Reconstruction based on Federated Learning Generative Adversarial Networks", 20th International Wireless Communications and Mobile Computing Conference, IWCMC 2024, pp. 742-747, 2024, DOI: 10.1109/IWCMC61514.2024.10592435. - 2024 - в издания, индексирани в Scopus или Web of Science
5. Hou Y.; Huang Y.; Chen X., "Distributed Radio Map Reconstruction Based on Semi-Asynchronous Federated Learning Generative Adversarial Networks", International Conference on Communications in China, ICCC Workshops 2024, pp. 96-101, 2024, DOI: 10.1109/ICCCWorkshops62562.2024.10693836. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science