Autors: Zhelyazov, T. A., Pshenichnov, S. G.
Title: Simulation of the Mechanical Wave Propagation in a Viscoelastic Media With and Without Stiff Inclusions
Keywords: Composite; Finite element analysis; Transient wave process;

Abstract: The contribution focuses on the numerical simulation of wave propagation in an array of solid inclusions regularly distributed in a viscoelastic matrix. Waves are provoked by a transient load. The study aims to compare wave propagation in the viscoelastic continuum with and without the presence of solid inclusions. To this end, stress and displacement evolutions (in the time domain) are monitored at specified locations at the boundaries of the defined continuum. The case study contributes to a better understanding of the phenomena related to the reflection and diffraction of the mechanical waves by the solid inclusions. The modeled set-up often referred to in the literature as a phononic crystal, will possibly shed light on numerous practical applications. Among others, these are high sound absorption and strategies for the detection of defect locations.

References

  1. Ivansson, S.M.,2006. Sound absorption by viscoelastic coatings with periodically distributed cavities.Journal of the Acoustical Society of America, 119 (6), pp. 3558-3567.
  2. Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., Page, J.H., 2015, Superabsorption of acoustic waves with bubble metascreens, Physical Review B - Condensed Matter and Materials Physics, Volume 91 (2), pp. art. no. 020301
  3. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P., 2000, Locally resonant sonic materials, Science, Volume 289 (5485), pp. pp. 1734-1736.
  4. Duranteau, M., Valier-Brasier, T., Conoir, J.-M., Wunenburger, R., 2016, Random acoustic metamaterial with a subwavelength dipolar resonance, Journal of the Acoustical Society of America, Volume 139 (6), pp. pp. 3341-3352
  5. Hinders, M.K., Rhodes, B.A., Fang, T.M., 1995, Particle-loaded composites for acoustic anechoic coatings, Journal of Sound and Vibration, Volume 185 (2), pp. pp. 219-246
  6. Ivansson, S.M., 2008, Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes, Journal of the Acoustical Society of America, Volume 124 (4), pp. pp. 1974-1984
  7. Leroy, V., Bretagne, A., Fink, M., Willaime, H., Tabeling, P., Tourin, A., 2009, Design and characterization of bubble phononic crystals, Applied Physics Letters, Volume 95 (17), pp. art. no. 171904
  8. Colombi, A., Roux, P., Guenneau, S., Gueguen, P., Craster, R.V., 2016, Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Scientific Reports, Volume 6, pp. art. no. 19238
  9. Rozovskii, M.I., 1965, The integral operator method in the hereditary theory of creep, Dokl. Akad. Nauk SSSR, Volume 160 (4), pp. pp. 792-795
  10. Rabotnov, Y.N., 1977, Elements of Hereditary Solid Mechanics, Moscow, Naka Publishers
  11. Ilyasov, M.H., 2011, Dynamical torsion of viscoelastic cone, TWMS J. Pure Appl. Math,, Volume 2 (2), pp. pp. 203-220
  12. Jeltkov, V.I., Tolokonnikov, L.A., Khromova, N.G., 1993, Transfer functions in viscoelastic body dynamics, Dokl. Akad. Nauk, Volume 329 (6), pp. pp. 718-719
  13. Lychev, S.A., 2008, Coupled dynamic thermoviscoelasticity problem, Mechanics of Solids, Volume 43 (5), pp. pp. 769-784
  14. Rossikhin, Y.A., Shitikova, M.V., Trung, P.T., 2017, Analysis of the Viscoelastic Sphere Impact against a Viscoelastic Uflyand-Mindlin Plate considering the Extension of Its Middle Surface, Shock and Vibration, Volume 2017, pp. art. no. 5652023
  15. Mainardi, F., 2010, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, New Jersey, World Scientific
  16. Achenbach, J.D., 1967, Vibrations of a viscoelastic body, AIAA Journal, Volume 5 (6), pp. pp. 1213-1214
  17. Colombaro, I., Giusti, A., Mainardi, F., 2017, On the propagation of transient waves in a viscoelastic Bessel medium, Zeitschrift fur Angewandte Mathematik und Physik, Volume 68 (3), pp. art. no. 62
  18. Christensen, R.M., 1982, Theory of Viscoelasticity: An Introduction, New York, Academic Press
  19. Zheng, Y., Zhou, F., 2015, Using Laplace transform to solve the viscoelastic wave problems in the dynamic material property tests, EPJ Web of Conferences, Volume 94, pp. art. no. 04021
  20. Igumnov, L., Korovaytseva, E.A., Pshenichnov, S.G.,2021.Construction of the Solutions of Non-stationary Dynamic Problems for Linear Viscoelastic Bodies with a Constant Poisson’s Ratio, Advanced Structured Materials, 137, pp. 89-96.

Issue

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13858 LNCS, pp. 339 – 348, 2023, Bulgaria, Borovets, Springer Science and Business Media Deutschland GmbH, DOI 978-303132411-6/0302974310.1007/978-3-031-32412-3_30/

Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus