Autors: Velichkova, R. T., Chen Ch., Wang Z., Ge Y., Liang R., Hou D., Tao J., Yan B., Zheng W., Chen G. Title: Characteristics prediction of hydrothermal biochar using data enhanced interpretable machine learning Keywords: Hydrothermal carbonization Random forest Correlation analysi References Issue
|
Цитирания (Citation/s):
1. Shafizadeh A., Shahbeik H., Rafiee Sh., Moradi A., Shahbaz M., Madadi M., Li Ch., Peng W., Tabatabaei M., Aghbashlo M., Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production, Fuel Volume 3471 Article number 128467, ISSN 00162361, DOI 10.1016/j.fuel.2023.128467 - 2023 - в издания, индексирани в Scopus или Web of Science
2. Yuan X.Z., Cao Y., Li J., Patel A.K., Dong C.D., Jin X., Gu C.,Yip A.C.K., Tsang D.C.W., Ok Y.S., Recent advancements and challenges in emerging applications of biochar-based catalysts, Biothechnology advances, Volume 67, DOI10.1016/j.biotechadv.2023.108181 - 2023 - в издания, индексирани в Scopus или Web of Science
3. Mohammed T. Zaki, Lewis S. Rowles, Donald A. Adjeroh, Kevin D. Orner, A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste, ACS EST Engg. 2023, 3, 10, 1424–1467, Publication Date:September 29, 2023, https://doi.org/10.1021/acsestengg.3c00043 - 2023 - в издания, индексирани в Scopus или Web of Science
4. Kolli Venkata Supraja, Himanshu Kachroo, Gayatri Viswanathan, Vishal Kumar Verma, Bunushree Behera, Tharaka Rama Krishna C. Doddapaneni, Priyanka Kaushal, Sk. Ziauddin Ahammad, Vijai Singh, Mukesh Kumar Awasthi, Rohan Jain, Biochar production and its environmental applications: Recent developments and machine learning insights, Bioresource Technology, Volume 387, 2023, 129634,ISSN 0960-8524,, https://doi.org/10.1016/j.biortech.2023.129634. - 2023 - в издания, индексирани в Scopus или Web of Science
5. Hossein Ali Kamali, Mahmoud Pasandidehfard, Investigating the interaction parameters on ventilation supercavitation phenomena: Experimental and numerical analysis with machine learning interpretation, Physics of Fluids 35, 113325 (2023) https://doi.org/10.1063/5.0172371 - 2023 - в издания, индексирани в Scopus или Web of Science
6. Anh Tuan Le, Ashok Pandey, Ranjan Sirohi, Prabhakar Sharma, Wei-Hsin Chen, Nguyen Dang Khoa Pham, Viet Dung Tran, Xuan Phuong Nguyen, Anh Tuan Hoang, Precise Prediction of Biochar Yield and Proximate Analysis by Modern Machine Learning and SHapley Additive exPlanations, Energy Fuels 2023, 37, 22, 17310–17327 Publication Date:October 28, 2023, https://doi.org/10.1021/acs.energyfuels.3c02868 - 2023 - в издания, индексирани в Scopus или Web of Science
7. Guannan Li, Zixi Wang, Chengliang Xu, Tao Li, Jiajia Gao, Qianjun Mao, Shiao Chen, A district-scale spatial distribution evaluation method of rooftop solar energy potential based on deep learning, Solar Energy, Volume 268, 2024, 112282, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2023.112282. - 2024 - в издания, индексирани в Scopus или Web of Science
8. Lianpeng Sun, Mingxuan Li, Bingyou Liu, Ruohong Li, Huanzhong Deng, Xiefei Zhu, Xinzhe Zhu, Daniel C.W. Tsang, Machine learning for municipal sludge recycling by thermochemical conversion towards sustainability, Bioresource Technology, Volume 394, 2024, 130254, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2023.130254. - 2024 - в издания, индексирани в Scopus или Web of Science
9. Wei, X., Liu, Y., Shen, L. et al. Machine learning insights in predicting heavy metals interaction with biochar. Biochar 6, 10 (2024). https://doi.org/10.1007/s42773-024-00304-7 - 2024 - в издания, индексирани в Scopus или Web of Science
10. Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Thanh Hai Truong, Marek Dzida, Minh Ho Tran, Huu Cuong Le, Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy, BioFPR, https://doi.org/10.1002/bbb.2596 - 2024 - в издания, индексирани в Scopus или Web of Science
11. Nguyen V., Sharma Pr., Ağbulut Ü., Le H. S., Cao D. N., Dzida M., Osman S., Le H. C., Tran V.D., Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches, International Journal of Green Energy, V. 21, Issue 12, Pages 2771 – 2798, ISSN 15435075 DOI 10.1080/15435075.2024.2326076 - 2024 - в издания, индексирани в Scopus или Web of Science
12. Nguyen T. H., Paramasivam Pr., Dong V. H., Le H. C., Nguyen D. Ch., Harnessing a Better Future: Exploring AI and ML Applications in Renewable Energy, International Journal on Informatics Visualization, Volume 8, Issue 1, Pages 55 – 78, 2024, ISSN 25499904 DOI 10.62527/joiv.8.1.2637 - 2024 - в издания, индексирани в Scopus или Web of Science
13. Manochkumar J., Jonnalagadda A., Cherukuri A., Vannier B., Janjaroen D., Chandrasekaran R., Ramamoorthy S., Machine learning-based prediction models unleash the enhanced production of fucoxanthin in Isochrysis galbana, Frontiers in Plant Science, Volume 15, ISSN 1664462X DOI 10.3389/fpls.2024.1461610 - 2024 - в издания, индексирани в Scopus или Web of Science
14. Wang B., Yue Y., Wang M., Sun K., Wang S., Bu Q., Research Progress in the Application of Machine Learning in the Preparation and Application of Biochar, Chemistry and Industry of Forest Products, Volume 44, Issue 2, Pages 127 – 137, ISSN 02532417 DOI 10.3969/j.issn.0253-2417.2024.02.017 - 2024 - в издания, индексирани в Scopus или Web of Science
15. Song Y., Huang Z., Jin M., Liu Z., Wang X., Hou C., Zhang X., Shen Z., Zhang Y., Machine learning prediction of biochar physicochemical properties based on biomass characteristics and pyrolysis conditions, Journal of Analytical and Applied Pyrolysis, Volume 181, ISSN 01652370 DOI 10.1016/j.jaap.2024.106596 - 2024 - в издания, индексирани в Scopus или Web of Science
16. Kumari S., Chowdhry J., Kumar M., Garg M. C., Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater, Groundwater for Sustainable Development, Volume 26, ISSN 2352801X DOI 10.1016/j.gsd.2024.101243 - 2024 - в издания, индексирани в Scopus или Web of Science
17. Han B., Kumar D., Pei Y., Norton M., Adams S. D., Khoo S. Y., Kouzani A. Z., Modelling of thermochemical processes of waste recycling: A review, Journal of Analytical and Applied Pyrolysis, Volume 182, ISSN 01652370 DOI 10.1016/j.jaap.2024.106687 - 2024 - в издания, индексирани в Scopus или Web of Science
18. Du Z., Sun X., Zheng S., Wang S., Wu L., An Y., Luo Y., Optimal biochar selection for cadmium pollution remediation in Chinese agricultural soils via optimized machine learning, Journal of Hazardous Materials, Volume 476, ISSN 03043894 DOI 10.1016/j.jhazmat.2024.135065 - 2024 - в издания, индексирани в Scopus или Web of Science
19. Wang Y., Xu L., Li J., Ren Z., Liu W., Ai Y., Zhou Y., Li Q., Zhang B., Guo N., Qu J., Zhang Y., Multi-output neural network model for predicting biochar yield and composition, Science of the Total Environment, Volume 945, ISSN 00489697 DOI 10.1016/j.scitotenv.2024.173942 - 2024 - в издания, индексирани в Scopus или Web of Science
20. Yang P., Xie B., Wang M., Guo W., Zhang X., Chen X., Chen W., Prediction of phenol yield by machine learning based on biomass characteristics, pyrolysis conditions, and catalyst properties, Energy Conversion and Management, Volume 320, ISSN 01968904 DOI 10.1016/j.enconman.2024.119001 - 2024 - в издания, индексирани в Scopus или Web of Science
21. Wang C., Zhao Y., Gao Y., Chen H., Li X., Zhou B., Fan D., Fang Z., Liu J., Interpretable machine learning for predicting heavy metal removal and optimizing biochar characteristics, Journal of Water Process Engineering, Volume 68, ISSN 22147144 DOI 10.1016/j.jwpe.2024.106484 - 2024 - в издания, индексирани в Scopus или Web of Science
22. Tong Y., Zhang W., Zhou J., Liu S., Kang B., Wang J., Jiang S., Leng L., Li H., Machine learning prediction and exploration of phosphorus migration and transformation during hydrothermal treatment of biomass waste, Science of the Total Environment, Volume 955, ISSN 00489697 DOI 10.1016/j.scitotenv.2024.176780 - 2024 - в издания, индексирани в Scopus или Web of Science
23. Tan S., Wang R., Dong J., Zhang K., Zhao Z., Yin Q., Liu J., Yang W., Cheng J., Hydrothermal-mediated in-situ nitrogen doping to prepare biochar for enhancing oxygen reduction reactions in microbial fuel cells, Bioresource Technology, Volume 416, ISSN 09608524 DOI 10.1016/j.biortech.2024.131789 - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus