Autors: Shakev, N. G., Ahmed, S. A., Popov, V. L., Topalov, A. V.
Title: Recognition and Following of Dynamic Targets by an Omnidirectional Mobile Robot using a Deep Convolutional Neural Network
Keywords: Deep Learning , Convolutional Neural Networks , Perception a

Abstract: Recent advances in deep learning have stimulated the research related to the application of deep neural networks to solve various problems in robotics. In the field of service robots recognition and tracking of dynamic objects plays an important role since it is crucial for developing behaviors allowing robots to co-exist with humans and other autonomous machines in shared environments. In this investigation, a deep convolutional neural network is implemented to allow an omnidirectional mobile platform, equipped with onboard TV camera, to recognize and follow other mobile robots moving in the lab. This task can be regarded as a substantial step on the way of achieving our goal to design a dynamic target following behavior for a service robot. During the conducted experiments, the implemented algorithm, based on a deep learning neural network, is able to recognize and localize on a sequence of images the other moving in the lab mobile robot.



    2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, pp. 589-594, 2018, Portugal, IEEE, DOI 10.1109/IS.2018.8710581

    Copyright IEEE

    Цитирания (Citation/s):
    1. Hassan, A.N., Al-Chlaihawi, S., Khekan, A.R. Artificial intelligence techniques over the fifth generation mobile networks (2021) Indonesian Journal of Electrical Engineering and Computer Science, 24 (1), pp. 317-328. DOI: 10.11591/ijeecs.v24.i1.pp317-328 - 2021 - в издания, индексирани в Scopus или Web of Science
    2. Chikurtev, D., Yovchev, K. Marker-based automatic dataset collection for robotic vision system (2021) Mechanisms and Machine Science, 102, pp. 145-153. DOI: 10.1007/978-3-030-75259-0_16 - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Taheri, H., Zhao, C.X. Omnidirectional mobile robots, mechanisms and navigation approaches (2020) Mechanism and Machine Theory, 153, art. no. 103958. DOI: 10.1016/j.mechmachtheory.2020.103958 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. McClellan, M., Cervelló-Pastor, C., Sallent, S. Deep learning at the mobile edge: Opportunities for 5G networks (2020) Applied Sciences (Switzerland), 10 (14), art. no. 4735. DOI: 10.3390/app10144735 - 2020 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science