Autors: 1. Vita, V., Fotis, G., Chobanov, V. Y., Pavlatos, C., Mladenov, V. M.
Title: Predictive Maintenance for Distribution System Operators in Increasing Transformers’ Reliability
Keywords: distribution system; distribution transformers; k-means clus

Abstract: Power transformers’ reliability is of the highest importance for distribution networks. A possible failure of them can interrupt the supply to consumers, which will cause inconvenience to them and loss of revenue for electricity companies. Additionally, depending on the type of damage, the recovery time can vary and intensify the problems of consumers. This paper estimates the maintenance required for distribution transformers using Artificial Intelligence (AI). This way the condition of the equipment that is currently in use is evaluated and the time that maintenance should be performed is known. Because actions are only carried out when necessary, this strategy promises cost reductions over routine or time-based preventative maintenance. The suggested methodology uses a classification predictive model to identify with high accuracy the number of transformers that are vulnerable to failure. This was confirmed by training, testing, and validating it with actual data in Colombia’s Cauc



    Electronics, vol. 12, issue 1356, pp. 1-23, 2023, Switzerland, MDPI,

    Цитирания (Citation/s):
    1. Zhao, D., Zhu, B., Li, L., Liu, X., Wen, L., Song, Y., Shen, H., Li, M., Li, X. and Wu, D., 2023. A Review of Methods for Measuring Oil Moisture. Measurement, pp. 1-13, No.113119. /10.1016/j.measurement.2023.113119 (Web of Science, Scopus, Google Scholar) IF 5.6, SJR 1.106 - 2023 - в издания, индексирани в Scopus или Web of Science
    2. Sarma, G.S., Reddy, B.R., Nirgude, P.M. and Naidu, P.V., 2023, Performance Assessment of Customized LSTM based Deep Learning Model for Predictive Maintenance of Transformer. International Journal of Electrical and Electronics Research (IJEER), Vol. 11, Issue 2, pp. 389-400, e-ISSN: 2347-470X (Scopus, Google Scholar) SJR 0.116 - 2023 - в издания, индексирани в Scopus или Web of Science
    3. Mîndra, T., Societatea de Inginerie, S.I.S., Ocheană, L. and Dobre, I., 2023, Stadiul actual al tehnologiilor utilizate pentru mentenanța predictivă. pp. 1-4, (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    4. Dai, T., Mei, L., Zhang, Y., Tian, B., Guo, R., Wang, T., Du, S. and Xu, S., 2023. UAVs and birds classification using robust coordinate attention synergy residual split-attention network based on micro-Doppler signature measurement by using L-band staring radar. Measurement, p.113692. Volume 222, 2023, No 113692, ISSN 0263-2241, (Web of Science, Scopus, Google Scholar) - 2023 - в издания, индексирани в Scopus или Web of Science
    5. Wang, Z., Li, Z., Zeng, X., Yu, K., He, S., Li, J., Lan, Y. and Zhuo, C., 2023. “Flexible grounding control strategy based on proportional series inertial control for distribution networks,” Electric Power Systems Research, vol. 225, pp. 1-11, ISSN 03787796, DOI 10.1016/j.epsr.2023.109841 (Web of Science, Scopus, Google Scholar) IF 3.9, SJR 1.099 - 2023 - в издания, индексирани в Scopus или Web of Science
    6. Ahmadi, B. and Shirazi, E., 2023. “A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration,”. Energies, vol. 16, issue (19), pp. 1-26, (Web of Science, Scopus, Google Scholar) IF 3.2 - 2023 - в издания, индексирани в Scopus или Web of Science
    7. Kumar, S., Abu-Siada, A., Das, N. and Islam, S., 2023. “Review of the Legacy and Future of IEC 61850 Protocols Encompassing Substation Automation System,” Electronics, vol. 12, issue (15), pp. 1-20, ISSN 20799292, DOI 10.3390/electronics12153345 (Web of Science, Scopus, Google Scholar) IF 2.9, SJR 0.628. - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science