Оригинал (Original) | |||||
---|---|---|---|---|---|
Автори: Уйкани, Б. Т., Минковска, Д. В., Стоянова, Л. Й. Заглавие: Application of Logistic Regression Technique for Predicting Student Dropout Ключови думи: student dropout, higher education, machine learning, logisti Библиография Издание
| Autors: Ujkani, B. T., Minkovska, D. V., Stoyanova, L. Y. Title: Application of Logistic Regression Technique for Predicting Student Dropout Keywords: student dropout, higher education, machine learning, logistic regression, numpy, scikit-learn References Issue
|
Цитирания (Citation/s):
1. Yunga Pedraza, Joel Omar, Estudio del estado del arte sobre la predicción de deserción universitaria usando machine learning, UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO, CARRERA DE COMPUTACIÓN, Quito, Ecuador, 2023 - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. Spassov, S., Cyber Threats to Nuclear Security and the Role of Education, 2023 11th International Scientific Conference on Computer Science, COMSCI 2023 – Proceedings, ISBN 979-835032525-6, DOI 10.1109/COMSCI59259.2023.10315941 - 2023 - в издания, индексирани в Scopus или Web of Science
3. Alghamdi, S., Soh, B., Li, A., A Comprehensive Review of Dropout Prediction Methods Based on Multivariate Analysed Features of MOOC Platforms, Multimodal Technologies and Interaction, Volume 9, Issue 1 January 2025, Article number 3, ISSN 24144088, DOI 10.3390/mti9010003 - 2025 - в издания, индексирани в Scopus или Web of Science
Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus