Autors: Nikolova, D. V., Vladimirov, I. H., Terneva, Z. A. Title: Artificial Humans: an Overview of Photorealistic Synthetic Datasets and Possible Applications Keywords: Artificial Humans, Synthetic Dataset, Photorealistic, Human Abstract: In this scientific paper, an overview of different photorealistic synthetic human datasets is presented. The creation of more and more artificial data is leading to rapid progress in various fields. Synthetic faces and whole bodies are needed during the processes of training and exploitation of applications in the field. The state-of-the-art synthetic human
representations are listed, including their applications. References - S. Mystakidis, "Metaverse." Encyclopedia 2.1 (2022)
- M. Mozumder, "Overview: Technology Roadmap of the Future Trend of Metaverse based on IoT, Blockchain, AI Technique, and Medical Domain Metaverse Activity." 2022 24th International Conference on Advanced Communication Technology (ICACT). IEEE, 2022;
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley, Sh. Ozair, A. Courville, Y. Bengio, “Generative Adversarial Networks”, Advances in neural information processing systems 27, 2014;
- S. Nightingale, S. Agarwal, E. Härkönen, J. Lehtinen, H. Farid, “Synthetic faces: how perceptually convincing are they?”, Journal of Vision September, 2021;
- A. Rössler, D. Cozzolino, L. Verdoliva, Ch. Riess, J. Thies, M. Nießner, “FaceForensics++: Learning to Detect Manipulated Facial Images”, Computer Vision and Pattern Recognition, 2019;
- T. Zhou, W. Wang, Zh. Liang, J. Shen, “Face Forensics in the Wild”, Computer Vision and Pattern Recognition, 2021;
- Y. Li, X. Yang, P. Sun, H. Qi, S. Lyu, “Celeb-DF: A Largescale Challenging Dataset for DeepFake Forensics”, 2020;
- ] H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu, D. Tao, “SynFace: Face Recognition with Synthetic Data”, 2021;
- U. A. Ciftci, I. Demir, “FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals”, 2020;
- U. A. Ciftci, I. Demir, “Where Do Deep Fakes Look? Synthetic Face Detection via Gaze Tracking”, 2021;
- E. Wood, T. Baltrušaitis, Ch. Hewitt, S. Dziadzio, M. Johnson, V. Estellers, Th. J. Cashman, J. Shotton, “Fake It Till You Make It: Face analysis in the wild using synthetic data alone”, 2021;
- D. Nikolova, I. Vladimirov, Z. Terneva, “Human Action Recognition for Pose-based Attention: Methods on the Framework of Image Processing and Deep Learning”, ICEST 2021;
- Z. Sun, J. Liu, Q. Ke, H. Rahmani, M. Bennamoun, G. Wang, “Human Action Recognition from Various Data Modalities: A Review”, 2021;
- G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, C. Schmid, “Learning from Synthetic Humans”, 2017;
- D. Rempe, T. Birdal, A. Hertzmann, J. Yang, S. Sridhar, L. J. Guibas, “HuMoR: 3D Human Motion Model for Robust Pose Estimation”, 2021;
- V. Gabeur, J. Franco, X. Martin, C. Schmid, G. Rogez, “Moulding Humans: Non-parametric 3D Human Shape Estimation from Single Images”, ICCV 2019;
- O. Matthews, K. Ryu, T. Srivastava, “Creating a Large-scale Synthetic Dataset for Human Activity Recognition”, 2020;
- S. Ghorbani, K. Mahdaviani, A. Thaler, K. Kording, DJ. Cook, G. Blohm, “MoVi: A large multi-purpose human motion and video dataset”, PLoS ONE 16(6): e0253157, 2021;
- F. Sardari, A. Paiement, S. Hannuna, M. Mirmehdi, “VI-Net— View-Invariant Quality of Human Movement Assessment”, Sensors 2020;
- G. Varol, I. Laptev, C. Schmid, A. Zisserman, “Synthetic Humans for Action Recognition from Unseen Viewpoints”, International Journal of Computer Vision 2021;
Issue
| ICEST Conference, issue 57, 2022, Macedonia, IEEE, DOI 10.1109/ICEST55168.2022.9828729 |
Copyright IEEE Full text of the publication |