Autors: Mallioras, I., Zaharis, Z.D., Lazaridis, P.I., Poulkov, V. K., Kantartzis, N.V., Yioultsis, T.V. Title: An Adaptive Beamforming Approach Applied to Planar Antenna Arrays Using Neural Networks Keywords: Adaptive beamforming; deep learning; gated recurrent units; Abstract: Future wireless networks depend on the improvement of current smart antenna operations so that they maintain high accuracy levels at low response times. Utilizing machine learning techniques, it is possible to replace the currently used algorithms with a much faster yet reliable alternative. In this study, we focus on adaptive beamforming applied to a planar antenna array using the null steering beamforming algorithm (NSB). We test different types of deep neural networks (DNNs) as potential alternative beamformers, by comparing their accuracy to that of the NSB algorithm. The application concerns an 8×8 planar antenna array composed of isotropic elements. The DNNs tested here are the traditional feedforward neural networks and recurrent neural networks using either gated recurrent units or long short-Term memory units. In addition, we investigate each DNN type to make sure we are utilizing the best version of each neural network architecture. References Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Guan H.; Al Hajj M.; Guillet V.; Shaiek H., "Enhanced Beam Widening Approach for RIS-Assisted Wireless Communication Systems", 2024 4th URSI Atlantic Radio Science Meeting, AT-RASC 2024, 2024, DOI: 10.46620/URSIATRASC24/TDYV1963. - 2024 - в издания, индексирани в Scopus или Web of Science
2. Li S.; Zhang X.; Mei Y., "A Beamforming Method to Enhance the Main Lobe Direction of NSB Algorithm", 2024 International Applied Computational Electromagnetics Society Symposium, ACES-China 2024 - Proceedings, 2024, DOI: 10.1109/ACES-China62474.2024.10700024. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science