Autors: Tsenev, V. P., Ivanova, M. S. Title: Statistical and machine learning approach for evaluation of control systems for automatic production lines Keywords: R&R statistical method, Measurement system analysis, Statist Abstract: The manufacturing processes and the control systems for automatic production lines mainly are evaluated through usage of statistical methods as recently machine learning algorithms are also used. The aim of the paper is to present an approach for control measurement systems evaluation, based on a combination of statistical techniques like attribute Repeatability& Reproducibility analysis, measurement system analysis and supervised machine learning algorithms like Random Forest and k-NN. The proposed method is verified in the production of the G8680x connector, which is used in the automotive industry. The control is performed 100% for all manufactured parts immediately after the “injection molding” process. It is proved that taking advantages of the statistics and machine learning, the manufacturing process and control measurement systems could be evaluated with very high accuracy. The exploration and analysis leads to the formulation of some recommendations in support of process engi References Issue
|
Цитирания (Citation/s):
1. Ahmed Hussein Ali, Mostafa Abduhgafoor Mohammed, Raed Abdulkareem Hasan, Maan Nawaf Abbod, Mohammed Sh. Ahmed, Tole Sutikno, “Big data classification based on improved parallel k-nearest neighbor “, TELKOMNIKA Telecommunication, Computing, Electronics and Control, Vol 21, No 1, 2023, Indonesia, ISSN: 1693-6930, e-ISSN: 2302-9293, DOI:http://doi.org/10.12928/telkomnika.v21i1.24290, Q3, SJR 0.314 - 2023 - в издания, индексирани в Scopus или Web of Science
2. Imam Riadi, Anton Yudhana and M Rosyidi Djou, “Optimization of Population Document Services in Villages using Naive Bayes and k-NN Method”, International Journal of Computing and Digital Systems, Bahrain, 2023, pp.189-199, DOI: https://dx.doi.org/10.12785/ijcds/XXXXXX, ISSN: 2210-142X - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
3. 3. Imam Riadi, Anton Yudhana, M. Rosyidi Djou, “Analisis Perbandingan Metode Naïve Bayes dan K-NN dalam Penentuan Lokasi Layanan Kependudukan Mobile”, Jurnal Computer Science and Information Technology (CoSciTech), Vol. 4, No. 3, Desember 2023, hal. 733-742, p-ISSN: 2723-567X, e-ISSN: 2723-5661, doi.org/10.37859/coscitech, http://ejurnal.umri.ac.id/index.php/coscitech/index, Indonesia. - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
4. 4. Felipe A. Llaugel, Néstor Agustín Jiménez Serrata, “Detección de patrones fuera del control de calidad en el recalentamiento de lingotes de acero (Palanquillas) utilizando modelos de clasificación de Machine Learning”, July 2023, DOI: 10.13140/RG.2.2.26048.10249. - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
5. 5. Onur Dogan, Ourania Areta, “Empowering Manufacturing Environments with Process Mining-Based Statistical Process Control”, MDPI June 2024 Machines 12(6):411 , DOI: 10.3390/machines12060411, IF=2.6. - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
6. I. Riadi, A. Yudhana, and M. R. Djou, Optimization of Population Document Services in Villages using Naive Bayes and k-NN Method, International Journal of Computing and Digital Systems, 15(1), pp. 127-138, DOI: 10.12785/ijcds/150111. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus