Autors: Paneva-Konovska, J. D., Kiryakova, V. S.
Title: On the multi-index Mittag-Leffler functions and their Mellin transforms
Keywords: multi-index Mittag-Leffler functions, Mellin transforms

References

    Issue

    International Journal of Applied Mathematics, vol. 33, issue 4, pp. 549-571, 2020, Bulgaria, Academic Publications Ltd., ISSN:1311-1728, DOI:10.12732/ijam.v33i4.1

    Цитирания (Citation/s):
    1. E. Bazhlekova, Completely monotone multinomial mittag-leffler type functions and diffusion equations with multiple time-derivatives. Fractional Calculus and Applied Analysis 24(1), pp. 88-111 - 2021 - в издания, индексирани в Scopus или Web of Science
    2. E. Bazhlekova, S. Pshenichnov, Wave propagation in viscoelastic half-space with memory functions of Mittag-Leffler type. International Journal of Applied Mathematics 34(3), pp. 423-440 - 2021 - в издания, индексирани в Scopus или Web of Science
    3. M. Ali, M. Ghayasuddin, W. A. Khan, K. S. Nisar, A novel kind of the multi-index Whittaker function and its certain properties, International Journal of Applied Mathematics, Vol. 34 No. 6, 2021, 1031-1047; doi:10.12732/ijam.v34i6.1 - 2021 - в издания, индексирани в Scopus или Web of Science
    4. RK Bairwa, K Singh A Study of k-generalized Mittag-Leffler Type Function with Four Parameters Journal of Mathematics and Informatics Vol. 21, 2021, 65-80 DOI: 10.22457/jmi.v21a06200 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Bazhlekov, I., Bazhlekova, E. "A predictor-corrector numerical approach to equations with general fractional derivative". International Journal of Applied Mathematics 35(5), pp. 693-709 - 2022 - в издания, индексирани в Scopus или Web of Science
    6. M. Ali, R. B. Paris, Multi-index Fubini-type polynomials, Montes Taurus J. Pure Appl. Math. 4 (1), 97–106, 2022; https://mtjpamjournal.com/wp-content/uploads/2021/12/MTJPAM-D-21-00044.pdf - 2022 - в издания, индексирани в Scopus или Web of Science
    7. Mainardi, F. “Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd Edition (Book)”, pp. 1-587, 2022, DOI 10.1142/p926 - 2022 - в издания, индексирани в Scopus или Web of Science
    8. Tomovski, Ž., Metzler, R., Gerhold, S. "Fractional characteristic functions, and a fractional calculus approach for moments of random variables". Fractional Calculus and Applied Analysis 25(4), pp. 1307-1323 - 2022 - в издания, индексирани в Scopus или Web of Science
    9. Bazhlekova, E. , Subordination principle for generalized fractional evolution equations, DISSERTATION for awarding of the scientiic degree DSc , 2022, IMI - BAS, 1-200, http://sci-gems.math.bas.bg/jspui/bitstream/10525/4279/1/EBazhlekova-dissertation.pdf - 2022 - в български издания
    10. . K. Rasheed1 and A. H. Majeed, Seven-parameter Mittag-Leffler operator with second-order differential subordination results, Nonlinear Functional Analysis and Applications, Vol. 28, No. 4, pp. 903-917; https://doi.org/10.22771/nfaa.2023.28.04.04 - 2023 - в издания, индексирани в Scopus или Web of Science
    11. S. Rogosin, M. Dubatovskaya, Multi-parametric Le Roy function, Fractional Calculus and Applied Analysis, 2023; Doi:10.1007/s13540-022-00119-y - 2023 - в издания, индексирани в Scopus или Web of Science
    12. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S. “Mittag-Leffler functions, related topics and applications”, Second Ed. (Book). Springer Monographs, 2020, 1-537; DOI: 10.1007/978-3-662-61550-8 - 2020 - в издания, индексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в реферирано издание, индексирана в Scopus