Autors: Tsokov, S. A., Lazarova, M. K., Aleksieva-Petrova, A. P.
Title: A Hybrid Spatiotemporal Deep Model Based on CNN and 2 LSTM for Air Pollution Prediction
Keywords: air pollution; spatiotemporal model; CNN; LSTM; hyperparamet

References

    Issue

    Sustainability, vol. 14, issue 9, 2022, Switzerland, MDPI, https://doi.org/10.3390/su14095104

    Цитирания (Citation/s):
    1. Zhou H, Wang T, Zhao H, Wang Z., Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network, Sustainability, 2023, 15(1):356. https://doi.org/10.3390/su15010356 - 2023 - в издания, индексирани в Scopus или Web of Science
    2. Zhang B. , Song C., Li Y., Jiang X., Spatiotemporal prediction of O3 concentration based on the KNN-Prophet-LSTM model, Heliyon, Vol. 8(11), 2022, https://doi.org/10.1016/j.heliyon.2022.e11670 - 2022 - в издания, индексирани в Scopus или Web of Science
    3. Seydi ST, Shah-Hosseini R, Amani M. A Multi-Dimensional Deep Siamese Network for Land Cover Change Detection in Bi-Temporal Hyperspectral Imagery. Sustainability. 2022; 14(19):12597. https://doi.org/10.3390/su141912597 - 2022 - в издания, индексирани в Scopus или Web of Science
    4. Khalil U, Azam U, Aslam B, Ullah I, Tariq A, Li Q, Lu L. Developing a Spatiotemporal Model to Forecast Land Surface Temperature: A Way Forward for Better Town Planning. Sustainability. 2022; 14(19):11873. https://doi.org/10.3390/su141911873 - 2022 - в издания, индексирани в Scopus или Web of Science
    5. Cocianu CL, Uscatu CR, Avramescu M. Improvement of LSTM-Based Forecasting with NARX Model through Use of an Evolutionary Algorithm. Electronics. 2022; 11(18):2935. https://doi.org/10.3390/electronics11182935 - 2022 - в издания, индексирани в Scopus или Web of Science
    6. Ajdour, A., Adnane, A., Ydir, B. et al. A new hybrid models based on the neural network and discrete wavelet transform to identify the CHIMERE model limitation. Environ Sci Pollut Res 30, 13141–13161 (2023). https://doi.org/10.1007/s11356-022-23084-8 - 2023 - в издания, индексирани в Scopus или Web of Science
    7. Nandi, B.P., Singh, G., Jain, A. et al. Evolution of neural network to deep learning in prediction of air, water pollution and its Indian context. Int. J. Environ. Sci. Technol. (2023). https://doi.org/10.1007/s13762-023-04911-y - 2023 - в издания, индексирани в Scopus или Web of Science
    8. Ba, D., Chen, G., Li, P., Application of LS-PCP model based on EWM in predicting settlement of high-speed railway roadbed, Journal of Infrastructure Intelligence and Resilience, Vol. 2, No. 2, 2023 - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    9. Zhou Sh., W.i Wang, L.Zhu, Q. Qiao, Y. Kang, Deep-learning architecture for PM2.5 concentration prediction: A review, Environmental Science and Ecotechnology, 2024, 100400, ISSN 2666-4984, https://doi.org/10.1016/j.ese.2024.100400 - 2024 - в издания, индексирани в Scopus или Web of Science
    10. Ayyamperumal R., A. Banerjee, Z. Zhang, N. Nazir, F. Li, Ch. Zhang, X. Huang, Quantifying climate variation and associated regional air pollution in southern India using Google Earth Engine, Science of The Total Environment, Volume 909, 2024, 168470, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2023.168470 - 2024 - в издания, индексирани в Scopus или Web of Science
    11. Otto P., A. Fusta Moro, J. Rodeschini, et al. Spatiotemporal modelling of PM2.5 concentrations in Lombardy (Italy): a comparative study.Environmental and Ecological Statistics (2024), pp.1-28, https://doi.org/10.1007/s10651-023-00589-0 - 2024 - в издания, индексирани в Scopus или Web of Science
    12. Thein, T., Y. Shiraishi, M. Morii, Personalized federated learning-based intrusion detection system: Poisoning attack and defense, Future Generation Computer Systems, Volume 153, 2024, pp. 182-192, ISSN 0167-739X, https://doi.org/10.1016/j.future.2023.10.005 - 2024 - в издания, индексирани в Scopus или Web of Science
    13. Srivastava, H., S. Kumar Das, Air pollution prediction system using XRSTH-LSTM algorithm, Environmental Science and Pollution Research, Vol. 30, No. 60, 2023, pp. 125313-125327, DOI: 10.1007/s11356-023-28393-0 - 2023 - в издания, индексирани в Scopus или Web of Science
    14. Shim, J., S. Hong, J. Lee, S. Lee, Y. Kim, K. Chon, S. Park, K. Cho, Deep learning with data preprocessing methods for water quality prediction in ultrafiltration, Journal of Cleaner Production, Vol. 428, art. no. 139217, 2023, DOI: 10.1016/j.jclepro.2023.139217 - 2023 - в издания, индексирани в Scopus или Web of Science
    15. Zaini, N., A. Ahmed, L. Ean, M. Chow, M. Malek, Forecasting of fine particulate matter based on LSTM and optimization algorithm, Journal of Cleaner Production, Vol. 427, art. no. 139233, 2023, DOI: 10.1016/j.jclepro.2023.139233 - 2023 - в издания, индексирани в Scopus или Web of Science
    16. Chu, Y.-Y., J. Yao, D.-W. Qiao, Z.-Y., Zhang, C.-Y. Zhong, L.-J. Tang, Three-hourly PM2.5 and O3 concentrations prediction based on time series decomposition and LSTM model with attention mechanism, Atmospheric Pollution Research, Vol. 14, No. 11, art. no. 101879, 2023, DOI: 10.1016/j.apr.2023.101879 - 2023 - в издания, индексирани в Scopus или Web of Science
    17. Kaur, M., D. Singh, M. Jabarulla, V. Kumar, J. Kang, H.-N. Lee, Computational deep air quality prediction techniques: a systematic review, Artificial Intelligence Review, Vol. 56, pp. 2053-2098, 2023, DOI: 10.1007/s10462-023-10570-9 - 2023 - в издания, индексирани в Scopus или Web of Science
    18. Zhang, Y., R. Zhang, B. Zhao, A systematic review of generative adversarial imputation network in missing data imputation, Neural Computing and Applications, Vol. 35, No. 27, pp. 19685-19705, 2023, DOI: 10.1007/s00521-023-08840-2 - 2023 - в издания, индексирани в Scopus или Web of Science
    19. Chen, C.-H., J.-P. Lai, Y.-M. Chang, C.-J. Lai, P.-F. Pai, A Study of Optimization in Deep Neural Networks for Regression, Electronics (Switzerland), Vol. 12, No. 14, 2023, art. no. 3071, DOI: 10.3390/electronics12143071 - 2023 - в издания, индексирани в Scopus или Web of Science
    20. Shu, H., Z. Song, H. Guo, X. Chen, Z. Yao, Deep Learning Algorithms for Air Pollution Forecasting: An Overview of Recent Developments, Proceedings of SPIE - The International Society for Optical Engineering, 12759, art. no. 1275918, 2023, DOI: 10.1117/12.2686356 - 2023 - в издания, индексирани в Scopus или Web of Science
    21. Iskandaryan, D., Study and Prediction of Air Quality in Smart Cities through Machine Learning Techniques Considering Spatiotemporal Components, 2023, PhD Thesis, Universitat Jaume, Spain, - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

    Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus