Autors: Ruskova, I. N., Gieva, E. E.
Title: Modelling of Gallium Arsenide Hall element with COMSOL Process Simulation Software
Keywords: Modelling, magnetic sensor, sensitivity, Hall effect

Abstract: In this work a 2D model of GaAs Hall sensor has been combined with a 3D DC model to study the performance of a Hall effect element. The achieved results are compared to simulation and experimental data of silicon Hall sensors manufactured on 0.18 μm CMOS technology and discussed. Simulation results are validated with respect to the electrical behavior of symmetrical Hall device with four contacts.


  1. J. WILSON, Sensor Technology Handbook, United States of America, (Elsevier Inc., 2005), pp. 1-15.
  2. K. NEDELCHEV, I. KRALOV, "Efficiency improvement of a vibration energy harvesting generator by using additional vibrating system", 43rd International Conference on Applications of Mathematics in Engineering and Economics, AIP Conference Proceedings 1910, edited by G. Venkov et. al (American Institute of Physics Inc. 2017), pp. 020015-1-12
  3. KRALOV, K. NEDELCHEV, A. ZAZPE, "Influence of the support stiffness of a vibration energy generator upon its frequency response", 42nd International Conference on Applications of Mathematics in Engineering and Economics, AIP Conference Proceedings 1789, edited by V. Pasheva et. al (American Institute of Physics Inc. 2016)
  4. H. HEIDARI, E. BONIZZONI, U. GATTI, and F. MALOBERTI, "Analysis and Modeling of Four-Folded Vertical Hall Devices in Current Domain", IEEE (2014), pp. 1-4
  5. J. KORVINK, O. PAUL, MEMS: A Practical Guide of Design, Analysis, and Applications, (Jointly published with William Andrew, Norwich, New York, USA Springer-Verlag Berlin Heidelberg 2006), pp. 53-92
  6. H. BALTES, CASTAGNETTI R. Semiconductor Sensors: Magnetic Sensors (ed. Sze S., Wiley, New York USA 1994). R. Popovic, "Hall Effect Devices", Elsevier, Volume 17, Issues 1-2 (2003), pp. 39-53
  7. E. RAMSDEN: Hall-Effect Sensors - Theory and Application, Elsevier, Newnes, Burlington (2006)
  8. I. KRALOV: New solution for transport and industrial noise protection through reflective noise barriers. MATEC Web of Conferences Volume 133, 7 November 2017, Article number 06001 9th International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies, BulTrans 2017, Sozopol, Bulgaria, DOI: 10.1051/matecconf/201713306001
  9. I. KRALOV, K. NEDELCHEV: Lowering the noise level in the transport flows through reduction of the traffic barrier reflected noise. 2019 IOP Conference Series: Materials Science and Engineering 618(1), 012051 DOI: 10.1088/1757-899X/618/1/012051
  10. I. RUSKOVA, E. GIEVA, V. YANTCHEV, M. HRISTOV: COMSOL Modeling of Hall Sensors Efficiency. Proc. XXVI International Scientific Conference Electronics - ET2017, September 13 - 15, 2017, Sozopol, Bulgaria, 978-1-5386-1753-3 /17/$31.00 ©2017 IEEE
  11. KRALOV I.; P. SINAPOV, I. IGNATOV, K. NEDELCHEV: Frictioninduced vibrations of a railway wheel considering different damping in the system, JBTA, Vol 18, No 4, 2012
  12. KRALOV I.; P. SINAPOV, I. IGNATOV, K. NEDELCHEV: Nonstationary friction-induced vibrations of a railway rail, JBTA, Vol 19, No 3, 2013


Journal of the Balkan Tribological Association, vol. 3, issue 28, pp. 66-74, 2022, Bulgaria, Book 3, Vol. 28 (2022), ISBN ISSN 1310-4772

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science