Autors: Yosifova, V. K., Tasheva, A. T., Trifonov, R. I. Title: Predicting Vulnerability Type in Common Vulnerabilities and Exposures (CVE) Database with Machine Learning Classifiers Keywords: common vulnerabilities and exposure (CVE), cybersecurity , m Abstract: Vulnerability type is not part of the standard CVE scheme so the ability to determine it only on the basis of text description would be a very useful for automated vulnerability handling. The growing number of hardware and software vulnerabilities discovered every year makes it more difficult for manual classification of the vulnerabilities types. This justifies the need for automatic machine learning classification. In this study we research the performance of base ML classifier algorithms, such as Linear Support Vector Classification, Naive Bayes, and Random Forest Classifier. To measure the performance of our classifiers, we use precision, recall, and f1-score evaluation metrics. Previous studies have focused on machine learning methods predicting platform vendor and products, vulnerability scoring, software vulnerabilities exploitation. Our study aims to show that machine learning is suitable for automated vulnerability type classification. References Issue
Copyright IEEE Xplore |
Цитирания (Citation/s):
1. Adhikari A., Kulkarni P., Survey of techniques to detect common weaknesses in program binaries, 2025, Cyber Security and Applications, issue 0, vol. 3, DOI 10.1016/j.csa.2024.100061, eissn 27729184 - 2025 - в издания, индексирани в Scopus
2. Sufi F., Alsulami M., Mathematical Modeling and Clustering Framework for Cyber Threat Analysis Across Industries, 2025, Mathematics, issue 4, vol. 13, DOI 10.3390/math13040655, eissn 22277390 - 2025 - в издания, индексирани в Scopus
3. Ren W., Li W., Hong Y., Du Y., Gao Y., Zhang H., Xia M., GC-PTransE: multi-step attack inference method based on graph convolutional neural network and translation embedding, 2025, Knowledge and Information Systems, issue 0, DOI 10.1007/s10115-025-02387-5, issn 02191377, eissn 02193116 - 2025 - в издания, индексирани в Scopus
4. Vargas-Rivera A., Esquivel-Vargas H., Towards AI-Based Identification of Publicly Known Vulnerabilities, 2025, Lecture Notes in Computer Science, issue 0, vol. 15264 LNCS, pp. 171-192, DOI 10.1007/978-3-031-82362-6_11, issn 03029743, eissn 16113349 - 2025 - в издания, индексирани в Scopus
5. Ghosh R., von Stockhausen H.-M., Schmitt M., Vasile G.M., Karn S.K., Farri O., CVE-LLM: Ontology-Assisted Automatic Vulnerability Evaluation Using Large Language Models, 2025, Proceedings of the AAAI Conference on Artificial Intelligence, issue 28, vol. 39, pp. 28757-28765, DOI 10.1609/aaai.v39i28.35139, issn 21595399, eissn 23743468 - 2025 - в издания, индексирани в Scopus
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus