Autors: Popov, D. A., Akterian, S. G., Fikiin, K. A., Stankov, B. N.
Title: Multipurpose system for cryogenic energy storage and tri-generation in a food factory: A case study of producing frozen french fries
Keywords: Cryogenics; Food processing; LAES; Polygeneration; Refrigera

References

    Issue

    Applied Sciences, vol. 11, issue 17, 2021, Switzerland, Multidisciplinary Digital Publishing Institute (MDPI), DOI: 10.3390/app11177882

    Цитирания (Citation/s):
    1. Qi, M., Park, J., Lee, I., & Moon, I. (2022). Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective. Renewable and Sustainable Energy Reviews, 159 doi:10.1016/j.rser.2022.112201 - 2022 - в издания, индексирани в Scopus и/или Web of Science
    2. Riaz, A., Qyyum, M.A., Hussain, A., & Lee, M. (2023). Tapping the energy and exergy benefits of channeling liquid air energy system in the hydrogen liquefaction process. Journal of Energy Storage, 72, doi: 10.1016/j.est.2023.108193 - 2023 - в издания, индексирани в Scopus и/или Web of Science
    3. Su, K., Du, H., Zhao, X., Wang, X., Zhang, X., Lu, Y., She, X., & Wang, C. (2023). Tech-economic analysis of liquid air energy storage - A promising role for carbon neutrality in China. Journal of Energy Storage, 72, doi: DOI 10.1016/j.est.2023.108786 - 2023 - в издания, индексирани в Scopus и/или Web of Science
    4. Cetegen, S. A., Gundersen, T., & Barton, P. I. (2024). Evaluating economic feasibility of liquid air energy storage systems in US and European markets. Energy, 300, 131524. https://doi.org/10.1016/j.energy.2024.131524 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    5. Faraldo, F., & Byrne, P. (2024). A Review of Energy-Efficient Technologies and Decarbonating Solutions for Process Heat in the Food Industry. Energies, 17(12), 3051. https://doi.org/10.3390/en17123051 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    6. Manassaldi, J. I., Incer-Valverde, J., Mussati, S. F., Morosuk, T., & Mussati, M. C. (2024). Optimization of liquid air energy storage systems using a deterministic mathematical model. Journal of Energy Storage, 102, 113940. https://doi.org/10.1016/j.est.2024.113940 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    7. Yang, M., Tong, Y., Wang, J., Duan, L., Zhang, H., Yang, C., … Ding, X. (2025). Design optimization and techno-economic performance comparisons of different solar aided liquid air energy storage systems. Thermal Science and Engineering Progress, 59, 103267. https://doi.org/10.1016/j.tsep.2025.103267 - 2025 - в издания, индексирани в Scopus
    8. Lim B., Kim D., Cho W., Gu J.-H., Machine Learning and Multilayer Perceptron-Based Customized Predictive Models for Individual Processes in Food Factories, 2025, Energies, issue 11, vol. 18, DOI 10.3390/en18112964, eissn 19961073 - 2025 - в издания, индексирани в Scopus
    9. Lykas P., Bellos E., Tzivanidis C., Comprehensive review and performance assessment of Carnot battery storage systems with multiple energy outputs, 2026, Energy Conversion and Management, issue 0, vol. 348, DOI 10.1016/j.enconman.2025.120702, issn 01968904 - 2025 - в издания, индексирани в Scopus
    10. Kang Y., Liu Y., Shen M., Zuo Z., He X., Tong L., Yin S., Wang L., Ding Y., Improved liquid air energy storage process utilizing LNG cold energy: Continuous and flexible energy storage, 2026, Renewable Energy, issue 0, vol. 256, DOI 10.1016/j.renene.2025.124502, issn 09601481, eissn 18790682 - 2025 - в издания, индексирани в Scopus

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus