Autors: Mihaylova, A. D., Georgieva, V. M. Title: Spleen segmentation in MRI sequence images using template matching and active contours Keywords: Spleen Segmentation; Active Contour; Sequence Segmentation References Issue
|
Цитирания (Citation/s):
1. D. F. T. Muñoz, F. Prieto and A. C. Correa, "Power Lines Detection from a Stereo Vision System," 2020 5th International Conference on Control and Robotics Engineering (ICCRE), Osaka, Japan, 2020, pp. 242-245, doi: 10.1109/ICCRE49379.2020.9096458. - 2020 - в издания, индексирани в Scopus и/или Web of Science
2. 1. Z. Gu et al., "CE-Net: Context Encoder Network for 2D Medical Image Segmentation," in IEEE Transactions on Medical Imaging, vol. 38, no. 10, pp. 2281-2292, Oct. 2019, doi: 10.1109/TMI.2019.2903562. - 2019 - в издания, индексирани в Scopus и/или Web of Science
3. 2. Pang, S., Du, A., Orgun, M.A. et al. CTumorGAN: a unified framework for automatic computed tomography tumor segmentation. Eur J Nucl Med Mol Imaging 47, 2248–2268 (2020). https://doi.org/10.1007/s00259-020-04781-3 - 2020 - в издания, индексирани в Scopus и/или Web of Science
4. 3. Prencipe B., Altini N., Cascarano G.D., Guerriero A., Brunetti A. (2020) A Novel Approach Based on Region Growing Algorithm for Liver and Spleen Segmentation from CT Scans. In: Huang DS., Bevilacqua V., Hussain A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science, vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_35 - 2020 - в издания, индексирани в Scopus и/или Web of Science
5. Siyuan Chen, Yanni Zou, Peter X. Liu, IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation, Computers in Biology and Medicine, Volume 135, 2021, 104551, Elsevier, ISSN 0010-4825, https://doi.org/10.1016/ - 2021 - в издания, индексирани в Scopus и/или Web of Science
6. Loussaief E.B., Rashwan H.A., Ayad M., Khalid A., Puig D., Adaptive weighted multi-teacher distillation for efficient medical imaging segmentation with limited data, 2025, Knowledge-Based Systems, issue 0, vol. 315, DOI 10.1016/j.knosys.2025.113196, issn 09507051 - 2025 - в издания, индексирани в Scopus
Вид: статия в списание, индексирана в Scopus