Autors: Mo, J., Stefanov, B. I., Lau, T.H.M., Chen, T., Wu, S., Wang, Z., Gong, X.-Q., Wilkinson, I., Schmid, G., Tsang, S.C.E.
Title: Superior Performance of Ag over Pt for Hydrogen Evolution Reaction in Water Electrolysis under High Overpotentials
Keywords: hydrogen production, water electrolysis, PEM electrolyser, o

Abstract: There has been a substantial research effort worldwide to develop non-noble metal catalysts in electrolyzers for H2 production from renewable energy sources. Pt catalysts are found to display the highest hydrogen evolution reaction (HER) activity under typical experimental conditions with relatively low acidity and overpotentials. However, it is noted that catalytic activity is highly dependent on acidity and applied potential used. In real practice of a high workload electrolyzer, high acidity and large negative potentials are required to optimize the HER activity. We hereby report that inexpensive silver catalysts, particularly the cubic form of silver nanoparticles, can clearly exhibit superior HER activity over Pt with a different rate-determining step in an electrolyzer when such conditions are reached. This is attributed to the weaker Ag–H bond at the surface than Pt–H which is more favorable for H recombination to form H2.

References

    Issue

    ACS Applied Energy Materials, vol. 2, issue 2, pp. 1221-1228, 2019, United States, American Chemical Society, ISSN 2574-0962

    Цитирания (Citation/s):
    1. Yu, J., Dai, Y., He, Q., Cheng, C., Shao, Z., Ni, M. Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation (2020) Applied Physics Reviews, 7 (4), art. no. 041304 - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Hu, J., Fang, C., Jiang, X., Zhang, D., Cui, Z. PtMn/PtCo alloy nanofascicles: Robust electrocatalysts for electrocatalytic hydrogen evolution reaction under both acidic and alkaline conditions (2020) Inorganic Chemistry Frontiers, 7 (22), pp. 4377-4386. - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Cao, Y., Xiahou, Y., Xing, L., Zhang, X., Li, H., Wu, C., Xia, H. Fe(ii)-Assisted one-pot synthesis of ultra-small core-shell Au-Pt nanoparticles as superior catalysts towards the HER and ORR (2020) Nanoscale, 12 (39), pp. 20456-20466 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Ma, Y., Zhou, G., Liu, Z., Xu, L., Sun, D., Tang, Y. Electronic structural regulation of CoP nanorods by the tunable incorporation of oxygen for enhanced electrocatalytic activity during the hydrogen evolution reaction (2020) Nanoscale, 12 (27), pp. 14733-14738 - 2020 - в издания, индексирани в Scopus или Web of Science
    5. Mo, J., Wu, S., Lau, T.H.M., Kato, R., Suenaga, K., Wu, T.-S., Soo, Y.-L., Foord, J.S., Tsang, S.C.E. Transition metal atom–doped monolayer MoS2 in a proton-exchange membrane electrolyzer (2020) Materials Today Advances, 6, art. no. 100020 - 2020 - в издания, индексирани в Scopus или Web of Science
    6. Hamidah, N.L., Shintani, M., Ahmad Fauzi, A.S., Kitamura, S., Mission, E.G., Hatakeyama, K., Sasaki, M., Quitain, A.T., Kida, T. Electrochemical Hydrogen Production from Humid Air Using Cation-Modified Graphene Oxide Membranes (2020) Pure and Applied Chemistry - 2020 - в издания, индексирани в Scopus или Web of Science
    7. Dimitrijević, S., Miliciani, M., Dimitrijević, S., Ranitović, M., Kamberović, Ž. Production of sub-micro sized silver particles by chemical reduction method in an environmentally-friendly manner (2020) Metallurgical and Materials Engineering, 26 (2), pp. 223-235. - 2020 - в издания, индексирани в Scopus или Web of Science
    8. Bazylak, A., Lee, J.K., Lee, C., Fahy, K.F., Kim, P.J., Krause, K., LaManna, J.M., Baltic, E., Jacobson, D.L., Hussey, D.S. Accelerating bubble detachment in porous transport layers with patterned through-pores (2020) ACS Applied Energy Materials, 3 (10), pp. 9676-9684. - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Li, Y., Wei, H., Wang, H., Tang, H. Voltammetric analysis of single nanobubble formation on Ag and Ag@MoS2 nanoelectrodes (2021) Journal of Physical Chemistry C, 125 (5), pp. 3073-3080. - 2021 - в издания, индексирани в Scopus или Web of Science
    10. Li, Y., Tsang, S.C.E. Unusual Catalytic Properties of High-Energetic-Facet Polar Metal Oxides (2021) Accounts of Chemical Research, 54 (2), pp. 366-378. - 2021 - в издания, индексирани в Scopus или Web of Science
    11. Rodríguez-Otamendi, D.I., Meza-Laguna, V., Acosta, D., Álvarez-Zauco, E., Huerta, L., Basiuk, V.A., Basiuk, E.V. Eco-friendly synthesis of graphene oxide–silver nanoparticles hybrids: The effect of amine derivatization (2021) Diamond and Related Materials, 111, art. no. 108208 - 2021 - в издания, индексирани в Scopus или Web of Science
    12. Zang, Y., Yang, B., Li, A., Liao, C., Chen, G., Liu, M., Liu, X., Ma, R., Zhang, N. Tuning Interfacial Active Sites over Porous Mo2N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes (2021) ACS Applied Materials and Interfaces, 13 (35), pp. 41573-41583. - 2021 - в издания, индексирани в Scopus или Web of Science
    13. Kim, H.S., Kim, H., Flores, M.C., Jung, G.-S., In, S.-I. Stable surface technology for her electrodes (2021) Catalysts, 11 (6), art. no. 693, . - 2021 - в издания, индексирани в Scopus или Web of Science
    14. Ayvali, T., Edman Tsang, S.C., Van Vrijaldenhoven, T. The position of ammonia in decarbonising maritime industry: An overview and perspectives: Part I (2021) Johnson Matthey Technology Review, 65 (2), pp. 275-290. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Zhang, X., Tang, J., Zhu, N., Li, L., Wang, Y. Water splitting, pollutant degradation and environmental impact using low-index faceted metal-based nanocrystals. A review (2022) Environmental Chemistry Letters, 20 (2), pp. 1035-1045. - 2022 - в издания, индексирани в Scopus или Web of Science
    16. Yuan, S., Gao, Q., Ke, C., Zuo, T., Hou, J., Zhang, J. Mesoporous Carbon Materials for Electrochemical Energy Storage and Conversion (2022) ChemElectroChem, 9 (6), art. no. e202101182 - 2022 - в издания, индексирани в Scopus или Web of Science
    17. Franceschini, E.A., Benavente Llorente, V., Lanterna, A.E. Ni composite electrodes for hydrogen generation: Activation of Nb-based semiconductors (2022) International Journal of Hydrogen Energy, 36 (47), pp. 15992-16004. - 2022 - в издания, индексирани в Scopus или Web of Science
    18. Streckova, M., Petrus, O., Guboova, A., Orinakova, R., Girman, V., Bera, C., Batkova, M., Balaz, M., Shepa, J., Dusza, J. Nanoarchitectonics of binary transition metal phosphides embedded in carbon fibers as a bifunctional electrocatalysts for electrolytic water splitting (2022) Journal of Alloys and Compounds, 923, art. no. 166472. - 2022 - в издания, индексирани в Scopus или Web of Science
    19. Sapountzi, F.M., Lavorenti, M., Vrijburg, W., Dimitriadou, S., Tyburska-Pueschel, B., Thüne, P., Niemantsverdriet, H., Pfeiffer, T.V., Tsampas, M.N. Spark Ablation for the Fabrication of PEM Water Electrolysis Catalyst-Coated Membranes (2022) Catalysts, 12 (11), art. no. 134. - 2022 - в издания, индексирани в Scopus или Web of Science
    20. Xu, J., Ramasamy, M., Tang, T., Wang, Y., Zhao, W., Tam, K.C. Synthesis of silver nanoclusters in colloidal scaffold for biolabeling and antimicrobial applications (2022) Journal of Colloid and Interface Science, 623, pp. 883-896. - 2022 - в издания, индексирани в Scopus или Web of Science
    21. Qin, X., Ola, O., Zhao, J., Yang, Z., Tiwari, S.K., Wang, N., Zhu, Y. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction (2022) Nanomaterials, 12 (11), art. no. 1806. - 2022 - в издания, индексирани в Scopus или Web of Science
    22. Park, K.W., Lee, S.Y., Moon, J., An, H.J., Kim, D.H., Lee, C.S., Park, J.T. In situ-grown Co3S4 sheet-functionalized metal-organic framework via surface engineering as a HER catalyst in alkaline media (2022) CrystEngComm. - 2022 - в издания, индексирани в Scopus или Web of Science
    23. Sharma, V., Dhiman, R., Mahajan, A. Ti2+ and Ti4+ species enriched MXene electrocatalyst for highly efficient hydrogen evolution and oxygen evolution reaction kinetics (2023) Applied Surface Science, 612, art. no. 155883 - 2023 - в издания, индексирани в Scopus или Web of Science
    24. Lin, X., Seow, J.Z.Y., Xu, Z.J. A brief introduction of electrode fabrication for proton exchange membrane water electrolyzers (2023) JPhys Energy, 5 (3), art. no. 034003 - 2023 - в издания, индексирани в Scopus или Web of Science
    25. Lattieff, F.A., Majdi, H.S., Jweeg, M.J., Al-Qrimli, F.A.M. Improvements in hydrogen evolution through a new design of coupling inexpensive nanocomposite electrocatalysts driven by high-voltage electrolysis (2023) Chemical Engineering Research and Design, 196, pp. 468-482. - 2023 - в издания, индексирани в Scopus или Web of Science
    26. Liu, R.-T., Xu, Z.-L., Li, F.-M., Chen, F.-Y., Yu, J.-Y., Yan, Y., Chen, Y., Xia, B.Y. Recent advances in proton exchange membrane water electrolysis (2023) Chemical Society Reviews, 52 (16), pp. 5652-5683. - 2023 - в издания, индексирани в Scopus или Web of Science
    27. Chaudhary K., Zulfiqar S., ALOthman Z.A., Shakir I., Warsi M.F., Cochran E.W. Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions (2024) Dalton Transactions, 53 (19), pp. 8177 - 8190. - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus