Autors: Ukov, T. G., Tsochev, G. R.
Title: Exploring Metacognitive Experiences by Simulating Internal Decisions of Information Access
Keywords: attention as internal action, cognitive computation, cognitive cycle, digital exam, internal decision making, Markov Decision Process, metacognition

Abstract: Research claims that metacognitive experiences can be classified as types of metacognitive regulation. Formulated in terms of the theory of Attention as Internal Action, this view raises questions about the timing of metacognitive experiences that occur in response to internal experiences. To investigate these questions, this work presents a method for cognitive computation that simulates consecutive internal decisions occurring during the process of taking a digital exam. A new version of the General Internal Model of Attention is proposed and supported by research. It is applied as cognitive architecture in a simulation system to reproduce cognitive phenomena such as the cognitive cycle, internal decision-making, imagery, body actions, learning, and metacognition. Two corresponding groups of Markov Decision Processes were designed as information stores for goal influence and learning, and a Hebbian machine learning algorithm was applied as an operator on the learning models. The timing and consecutiveness of metacognitive experiences were analyzed based on the cognitive cycle results, and several hypotheses were derived. One of them suggests that the first engagement in a metacognitive experience for each question in the exam is delayed over the course of the exam-taking process.

References

  1. Stanton J.D. Sebesta A.J. Dunlosky J. Fostering Metacognition to Support Student Learning and Performance CBE Life Sci. Educ. 2021 20 fe3 10.1187/cbe.20-12-0289
  2. Ukov T. Tsochev G. Reviewing a Model of Metacognition for Application in Cognitive Architecture Design Systems 2025 13 177 10.3390/systems13030177
  3. Efklides A. The Role of Metacognitive Experiences in the Learning Process Psicothema 2009 21 76 82
  4. Madl T. Baars B.J. Franklin S. The Timing of the Cognitive Cycle PLoS ONE 2011 6 e14803 10.1371/journal.pone.0014803
  5. Ukov T. Tsochev G. Yoshinov R. A Monitoring System for Measuring the Cognitive Cycle via a Continuous Reaction Time Task Systems 2025 13 597 10.3390/systems13070597
  6. Marks D.F. The Action Cycle Theory of Perception and Mental Imagery Vision 2023 7 12 10.3390/vision7010012
  7. Franklin S. Madl T. D’Mello S. Snaider J. LIDA: A Systems-Level Architecture for Cognition, Emotion, and Learning IEEE Trans. Auton. Ment. Dev. 2014 6 19 41 10.1109/TAMD.2013.2277589
  8. Ukov T.G. Cognitive Monitoring of Learning as Experience Via a Semiotic Framework for System Models SSRN 2025 10.2139/ssrn.5081756
  9. Tsochev G. Ukov T. Explaining Crisis Situations via a Cognitive Model of Attention Systems 2024 12 364 10.3390/systems12090364
  10. Franklin S. Baars B.J. Ramamurthy U. Ventura M. The Role of Consciousness in Memory Memory 2005 1 38
  11. Yeung N. Summerfield C. Metacognition in Human Decision-Making: Confidence and Error Monitoring Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012 367 1310 1321 10.1098/rstb.2011.0416
  12. Norman D.A. Shallice T. Attention to Action: Willed and Automatic Control of Behavior BT-Consciousness and Self-Regulation Consciousness and Self-Regulation Springer Boston, MA, USA 1986 Volume 4 1 14
  13. Vallence A.M. Rurak B.K. Fujiyama H. Hammond G.R. Covariation of the Amplitude and Latency of Motor Evoked Potentials Elicited by Transcranial Magnetic Stimulation in a Resting Hand Muscle Exp. Brain Res. 2023 241 927 936 10.1007/s00221-023-06575-z
  14. Kugele S. Franklin S. Learning in LIDA Cogn. Syst. Res. 2021 66 176 200 10.1016/j.cogsys.2020.11.001
  15. Gresch D. Boettcher S.E.P. van Ede F. Nobre A.C. Shifting Attention between Perception and Working Memory Cognition 2024 245 105731 10.1016/j.cognition.2024.105731 38278040
  16. Jaffe K. Infodynamics, a Review Qeios 2024 4 1 22 10.2139/ssrn.4715997
  17. Cieslik E.C. Mueller V.I. Eickhoff C.R. Langner R. Eickhoff S.B. Three Key Regions for Supervisory Attentional Control: Evidence from Neuroimaging Meta-Analyses Neurosci. Biobehav. Rev. 2015 48 22 34 10.1016/j.neubiorev.2014.11.003
  18. Franklin S. Madl T. Strain S. Faghihi U. Dong D. Kugele S. Snaider J. Agrawal P. Chen S. A LIDA Cognitive Model Tutorial Biol. Inspired Cogn. Archit. 2016 16 105 130 10.1016/j.bica.2016.04.003
  19. Markus A. Eviatar Z. Competition in Context: Response Selection within the Supervisory Attentional System Model Cogn. Neuropsychol. 2023 40 43 57 10.1080/02643294.2023.2223918 37322446
  20. Wixted J.T. Atkinson and Shiffrin’s (1968) Influential Model Overshadowed Their Contemporary Theory of Human Memory J. Mem. Lang. 2024 136 104471 10.1016/j.jml.2023.104471
  21. Baars B.J. Franklin S. How Conscious Experience and Working Memory Interact Trends Cogn. Sci. 2003 7 166 172 10.1016/S1364-6613(03)00056-1
  22. Sun R. Slusarz P. Terry C. The Interaction of the Explicit and the Implicit in Skill Learning: A Dual-Process Approach Psychol. Rev. 2005 112 159 192 10.1037/0033-295X.112.1.159
  23. Baars B.J. The Global Workspace Theory of Consciousness: Predictions and Results The Blackwell Companion to Consciousness Wiley Hoboken, NJ, USA 2017
  24. Baars B.J. Gage N.M. Consciousness and Attention Cognition, Brain, and Consciousness Elsevier Amsterdam, The Netherlands 2010 238 303
  25. Baars B.J. Franklin S. Ramsoy T.Z. Global Workspace Dynamics: Cortical “Binding and Propagation” Enables Conscious Contents Front. Psychol. 2013 4 200 10.3389/fpsyg.2013.00200
  26. Zion S.R. Crum A.J. Mindsets Matter: A New Framework for Harnessing the Placebo Effect in Modern Medicine International Review of Neurobiology Elsevier Amsterdam, The Netherlands 2018 Volume 138 137 160 978-0-12-814325-4
  27. Wang S. Allen R.J. Fang S.Y. Li P. Cross-Modal Working Memory Binding and L1-L2 Word Learning Mem. Cogn. 2017 45 1371 1383 10.3758/s13421-017-0731-2
  28. Johnson-Laird P.N. Mental Models and Cognitive Change J. Cogn. Psychol. 2013 25 131 138 10.1080/20445911.2012.759935
  29. Sun R. Zhang X. Mathews R. Modeling Meta-Cognition in a Cognitive Architecture Cogn. Syst. Res. 2006 7 327 338 10.1016/j.cogsys.2005.09.001
  30. Sibert C. Hake H. Laird J. Lebiere C. Rosenbloom P. Stocco A. The Role of The Basal Ganglia in the Human Cognitive Architecture: A Dynamic Causal Modeling Comparison Across Tasks and Individuals Proceedings of the 43rd Annual Meeting of the Cognitive Science Society: Comparative Cognition: Animal Minds, CogSci 2021 Vienna, Austria 26–29 July 2021
  31. Jones S.J. Laird J.E. A Cognitive Architecture Theory of Anticipatory Thinking AI Mag. 2023 44 155 164 10.1002/aaai.12102
  32. Ganesha D. Venkatamuni V.M. Review on Cognitive Architectures Indian J. Sci. Technol. 2017 10 1 8 10.17485/ijst/2017/v10i1/109392
  33. Boccaccio F.M. Pennisi A. Guerrera C.S. Platania G.A. Torre V. Varrasi S. Vezzosi V.F. Coco F. Castellano S. Pirrone C. Mental Imagery between Cognition and Emotion: A Narrative Review Psychiatry Int. 2024 5 697 717 10.3390/psychiatryint5040049
  34. Baars B.J. In the Theater of Consciousness Oxford University Press Oxford, UK 1997 978-0-19-510265-9
  35. Parkins E.J. Cerebellum and Cerebrum in Homeostatic Control and Cognition Routledge Oxfordshire, UK 2021 978-1-003-02460-6
  36. Van Caenegem E.E. Moreno-Verdú M. Waltzing B.M. Hamoline G. McAteer S.M. Frahm L. Hardwick R.M. Multisensory Approach in Mental Imagery: ALE Meta-Analyses Comparing Motor, Visual and Auditory Imagery Neurosci. Biobehav. Rev. 2024 167 105902 10.1016/j.neubiorev.2024.105902
  37. Damasio A.R. Emotions and Feelings Feelings and Emotions Cambridge University Press Cambridge, UK 2004 49 57
  38. Bridge H. Harrold S. Holmes E.A. Stokes M. Kennard C. Vivid Visual Mental Imagery in the Absence of the Primary Visual Cortex J. Neurol. 2012 259 1062 1070 10.1007/s00415-011-6299-z
  39. van Otterlo M. Wiering M. Reinforcement Learning and Markov Decision Processes Reinforcement Learning Springer Berlin/Heidelberg, Germany 2012 3 42
  40. Morais G. Yuji E. Costa P. Simões A. Gudwin R. Colombini E. A General Framework for Reinforcement Learning in Cognitive Architectures Cogn. Syst. Res. 2025 91 101354 10.1016/j.cogsys.2025.101354
  41. Aubret A. Matignon L. Hassas S. An Information-Theoretic Perspective on Intrinsic Motivation in Reinforcement Learning: A Survey Entropy 2023 25 327 10.3390/e25020327
  42. Job S. Tao X. Cai T. Li L. Xie H. Xu C. Yong J. HebCGNN: Hebbian-Enabled Causal Classification Integrating Dynamic Impact Valuing Knowl. Based Syst. 2025 311 113094 10.1016/j.knosys.2025.113094
  43. Cui X. Jeter C.B. Yang D. Montague P.R. Eagleman D.M. Vividness of Mental Imagery: Individual Variability Can Be Measured Objectively Vision Res. 2007 47 474 478 10.1016/j.visres.2006.11.013
  44. Sun Y. Xue X. Li Z. Ma H. Zhang D. Association of Visual Conscious Experience Vividness with Human Cardiopulmonary Function Stress Brain 2023 3 80 95 10.26599/sab.2022.9060033
  45. Brysbaert M. How Many Words Do We Read per Minute? A Review and Meta-Analysis of Reading Rate J. Mem. Lang. 2019 109 104047 10.1016/j.jml.2019.104047
  46. Al-Shargie F. Tariq U. Mir H. Alawar H. Babiloni F. Al-Nashash H. Vigilance Decrement and Enhancement Techniques: A Review Brain Sci. 2019 9 178 10.3390/brainsci9080178
  47. Neuwirt H. Eder I.E. Gauckler P. Horvath L. Koeck S. Noflatscher M. Schaefer B. Simeon A. Petzer V. Prodinger W.M. et al. Impact of Familiarity with the Format of the Exam on Performance in the OSCE of Undergraduate Medical Students—An Interventional Study BMC Med. Educ. 2024 24 179 10.1186/s12909-024-05091-0
  48. Goldberg T.E. Harvey P.D. Wesnes K.A. Snyder P.J. Schneider L.S. Practice Effects Due to Serial Cognitive Assessment: Implications for Preclinical Alzheimer’s Disease Randomized Controlled Trials Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015 1 103 111 10.1016/j.dadm.2014.11.003

Issue

Systems, vol. 13, 2025, Albania, https://doi.org/10.3390/systems13110982

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science