Autors: Stoichev T., Almeida C.M.R., Slavov, T. N., Georgieva P. Title: Prediction of Daily River Discharge to Estuaries Based on Meteorological Data Keywords: air temperature, atmospheric precipitation, explainable statistical models, meteorological data, multiple regression models, river dischargeAbstract: methodology is proposed to predict the daily river discharge (RD) to estuaries from rivers draining in similar temperate zones. Multiple regression models are proposed to estimate RD using only available meteorological data. The models are based on monthly air temperature (T) and recent (PR) and non-recent (PNR) atmospheric precipitation (rainfall). They consist of the linear and nonlinear terms of T, PR, and PNR, without interaction terms between them. Four rivers located in the north and centre of Portugal (flowing to the Atlantic Ocean) are used in this study—Vouga, Antuã, Neiva, and Mondego. The optimal period used to compute the recent precipitation history is between 4 and 7 days for Vouga, Antuã, and Mondego and is 11 days for Neiva. The recommended lag to compute the non-recent precipitation history is between 50 and 90 days. The optimisation of the lengths of recent and non-recent periods improved the model performance, compared with previously proposed models with interaction terms between the meteorological variables. The obtained models provide a clear interpretation of the impact that meteorology has on RD. All rivers showed similar responses, but the flows of bigger rivers (Vouga, Mondego) were more significantly affected by precipitation and temperature. The proposed models are useful for analysing biogeochemical processes in rivers and estuaries, as well as for assessing flood and drought risks in sensitive areas. References - Stoichev T. Tessier E. Almeida C.M.R. Basto M.C.P. Vasconcelos V.M. Amouroux D. Flux model to estimate the transport of mercury species in a contaminated lagoon (Ria de Aveiro, Portugal) Environ. Sci. Pollut. Res. 2018 25 17371 17382 10.1007/s11356-018-1925-2
- Xu H. Taylor R.G. Xu Y. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China Hydrol. Earth Syst. Sci. 2011 15 333 344 10.5194/hess-15-333-2011
- Rasouli K. Hsieh W.W. Cannon A.J. Daily streamflow forecasting by machine learning methods with weather and climate inputs J. Hydrol. 2012 414–415 284 293 10.1016/j.jhydrol.2011.10.039
- Vilaysane B. Takara K. Luo P. Akkharath I. Duan W. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR Procedia Environ. Sci. 2015 28 380 390 10.1016/j.proenv.2015.07.047
- Beven K.J. Changing ideas in hydrology: The case of physicallybased models J. Hydrol. 1989 105 157 172 10.1016/0022-1694(89)90101-7
- Muthukrishnan S. Harbor J. Lim K.J. Engel B.A. Calibration of a simple rainfall-runoff model for long-term hydrological impact evaluation URISA J. 2006 18 35 42
- Du J. Xie S. Xu Y. Xu C. Singh V.P. Development and testing of a simple physically-based distributed rainfall-runoff model for storm runoff simulation in humid forested basins J. Hydrol. 2007 336 334 346 10.1016/j.jhydrol.2007.01.015
- Stoichev T. Espinha Marques J. Almeida C.M. de Diego A. Basto M.C.P. Moura R. Vasconcelos V.M. Simple statistical models for relating river discharge with precipitation and air temperatures–case study of River Vouga (Portugal) Front. Earth Sci. 2017 11 203 213 10.1007/s11707-017-0622-7
- Brath A. Montanari A. Toth E. Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model J. Hydrol. 2004 291 232 253 10.1016/j.jhydrol.2003.12.044
- Espinha Marques J. Samper J. Pisani B. Alvares D. Carvalho J.M. Chaminé H.I. Marques J.M. Vieira G.T. Mora C. Sodré Borges F. Evaluation of water resources in a high-mountain basin in Serra da Estrela, Central Portugal, using a semi-distributed hydrological model Environ. Earth Sci. 2011 62 1219 1234 10.1007/s12665-010-0610-7
- Gemmer M. Jiang T. Su B. Kundzewicz Z.W. Seasonal precipitation changes in the wet season and their influence on flood/ drought hazards in the Yangtze River Basin, China Quat. Int. 2008 186 12 21 10.1016/j.quaint.2007.10.001
- Kostić S. Stojković M. Prohaska S. Vasović N. Modeling of river flow rate as a function of rainfall and temperature using response surface methodology based on historical time series J. Hydroinformatics 2016 18 651 665 10.2166/hydro.2016.153
- AEMET-IM Iberian Climate Atlas-Air Temperature and Precipitation (1971–2000) Ministerio de Medio Ambiente y Medio Rural y Marino Madrid, Spain Instituto de Meteorologia Lisboa, Portugal 2011
- Dias J.M. Abrantes I. Rocha F. Suspended particulate matter sources and residence time in a mesotidal lagoon J. Coast. Res. 2007 50 1034 1039 10.2112/JCR-SI50-187.1
- Cerqueira M.A. Silva J.F. Magalhães F.P. Soares F.M. Pato J.J. Assessment of water pollution in the Antuã River basin (Northwestern Portugal) Environ. Monit. Assess. 2008 142 325 335 10.1007/s10661-007-9932-7 17882523
- Stoichev T. Tessier E. Amouroux D. Almeida C.M. Basto M.C.P. Vasconcelos V.M. Multiple regression analysis to assess the role of plankton on the distribution and speciation of mercury in water of a contaminated lagoon J. Hazard. Mater. 2016 318 711 722 10.1016/j.jhazmat.2016.07.061 27484944
- Stoichev T. Tessier E. Coelho J.P. Lobos Valenzuela M.G. Pereira M.E. Amouroux D. Multiple regression analysis to assess the spatial distribution and speciation of mercury in surface sediments of a contaminated lagoon J. Hazard. Mater. 2019 367 715 724 10.1016/j.jhazmat.2018.12.109
- Stoichev T. Coelho J.P. de Diego A. Lobos Valenzuela M.G. Pereira M.E. de Chanvalon A.T. Amouroux D. Multiple regression analysis to assess the contamination with metals and metalloids in surface sediments (Aveiro Lagoon, Portugal) Mar. Pollut. Bull. 2020 159 111470 10.1016/j.marpolbul.2020.111470
- Rada J.P.A. Duarte A.C. Pato P. Cachada A. Carreira R.S. Sewage contamination of sediments from two Portuguese Atlantic coastal systems, revealed by fecal sterols Mar. Pollut. Bull. 2016 103 319 324 10.1016/j.marpolbul.2016.01.010
- Mendes J. Maia R. Methodologia prática para delimitação de leitos de cheia em zonas estuarinas Exemplo de Applicação ao rio Neiva [Practical Methodology for Delimitation of Flood Plain in Estuarine Areas. Application to the Neiva River], Proceedings of the 5as Jornadas de Hidráulica, Recursos Hídricos e Ambiente FEUP Porto, Portugal 2010 978-989-955557-4-7
- de Oliveira V.R.M.G. O Ambiente Fluvial. Perspectiva Geomorfológica e Sedimentológica. Exemplos na bacia do rio Neiva [The Fluvial Environment. A Geomorphological and Sedimentological Study. Examples in the Neiva River Basin] MSc Thesis University of Minho Braga, Portugal 2007
- Sousa R. Nogueira J.G. Miranda F. Teixeira A. Time travelling through local ecological knowledge regarding an endangered species Sci. Total Environ. 2020 739 140047 10.1016/j.scitotenv.2020.140047
- Reis J. The freshwater pearl mussel [Margaritifera margaritifera (L.)] (Bivalvia, Unionoida) rediscovered in Portugal and threats to its survival Biol. Conserv. 2003 114 447 452 10.1016/S0006-3207(03)00086-7
- Ferreira J.G. Simas T. Nobre A. Silva M.C. Shifferegger K. Lencart-Silva J. Identification of Sensitive Areas and Vulnerable Zones in Transitional and Coastal Portuguese Systems. Application of the United States National Estuarine Eutrophication Assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana Systems INAG/IMAR Lisbon, Portugal 2003
- R Core Team R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing Vienna, Austria 2017 Available online: https://www.R-project.org/ (accessed on 1 February 2019)
- Crawley M.J. The R Book Wiley Chichester, UK 2007
- Bellanger L. Tomassone R. Exploration de Données et Méthodes Statistiques: Data Analysis & Data Mining Avec le Logiciel R [Data Exploration and Statistical Methods: Data Analysis & Data Mining Using R] Ellipses Paris, France 2014
- Shi X. Qin T. Nie H. Weng B. Shan H. Changes in Major Global River Discharges Directed into the Ocean Int. J. Environ. Res. Public Health 2019 16 1469 10.3390/ijerph16081469
- Hansford M.R. Plink-Björklund P. Jones E.R. Global quantitative analyses of river discharge variability and hydrograph shape with respect to climate types Earth-Sci. Rev. 2020 200 102977 10.1016/j.earscirev.2019.102977
- Cunha L. Santos J. Ramos A. The Mondego River and Its Valley Landscapes and Landforms of Portugal, World Geomorphological Landscapes Vieira G. Zêzere J.L. Mora C. Springer Cham, Switzerland 2020 175 184
- Mendes J. Maia R. Spatial downscaling of 3-hourly precipitation forecast data at river basin scale Meteorol. Atmos. Phys. 2020 132 143 158 10.1007/s00703-019-00678-5
- Georgieva P. Ilchmann A. Adaptive Lambda-tracking control of activated sludge processes Int. J. Control. 2001 74 1247 1259 10.1080/00207170110065910
- Gourley J.J. Vieux B.E. A method for identifying sources of model uncertainty in rainfall-runoff simulations J. Hydrol. 2006 327 68 80 10.1016/j.jhydrol.2005.11.036
Issue
| Water (Switzerland), vol. 17, 2025, Albania, https://doi.org/10.3390/w17172499 |
|