Autors: Petkova, R. R., Bozhilov, I. B., Tonchev K., Manolova, A. H., Poulkov, V. K. Title: Learning 3D Rotations from Point Cloud Data Keywords: 3D rotation prediction, Graph convolutions, Point cloudsAbstract: This paper presents a deep learning (DL) based method for 3D rotation prediction on point cloud data. The proposed approach utilizes a single graph convolutional layer to capture meaningful geometric features and further regresses rotational quaternion via shallow multi-layer perceptron (MLP). Experimental results show that the method outperforms traditional registration algorithms, such as Iterative Closest Point (ICP), across multiple evaluation metrics, and also surpasses several DL-based approaches in various criteria. Moreover, the model is designed with only a few thousand parameters, making it highly lightweight and computationally efficient. References - P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes, " in Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586-606, Apr. 1992.
- Y. Wang and J. M. Solomon, "Deep closest point: Learning representations for point cloud registration, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 3523-3532, 2019.
- C. Li, X. Lin, Z. Liao, H. Wu, Z. Xu, and X. Zhou, "A fast registration method for multi-view point clouds with low overlap in robotic measurement, " Biomimetic Intelligence and Robotics, vol. 5, no. 2, pp. 100195, 2025.
- S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, and K. Schindler, "Predator: Registration of 3D point clouds with low overlap, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 4267-4276, 2021.
- Y. Wang, P. Zhou, G. Geng, L. An, and Y. Liu, "CCAG: Endto-end point cloud registration, " IEEE Robot. Autom. Lett., vol. 9, no. 1, pp. 435-442, 2023.
- Z. Qin, H. Yu, C. Wang, Y. Guo, Y. Peng, and K. Xu, "Geometric transformer for fast and robust point cloud registration, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 11143-11152, 2022.
- Z. J. Yew and G. H. Lee, "Regtr: End-to-end point cloud correspondences with transformers, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 6677-6686, 2022.
- V. Sarode, X. Li, H. Goforth, Y. Aoki, R. A. Srivatsan, S. Lucey, and H. Choset, "PCRNet: Point cloud registration network using PointNet encoding, " arXiv preprint arXiv: 1908. 07906, 2019.
- Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, "PointNetLK: Robust & efficient point cloud registration using PointNet, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 7163-7172, 2019.
- Y. Yuan, Y. Wu, J. Lei, C. Hu, M. Gong, X. Fan, et al., "Learning compact transformation based on dual quaternion for point cloud registration, " IEEE Trans. Instrum. Meas., vol. 73, pp. 1-12, 2024.
- T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks, " arXiv preprint arXiv: 1609. 02907, 2016.
- A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, et al., "ShapeNet: An information-rich 3D model repository, " arXiv preprint arXiv: 1512. 03012, 2015.
- M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering, " in Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 29, 2016.
- M. Simonovsky and N. Komodakis, "Dynamic edgeconditioned filters in convolutional neural networks on graphs, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 3693-3702, 2017.
Issue
| 60th International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST 2025 - Proceedings, 2025, Macedonia, https://doi.org/10.1109/ICEST66328.2025.11098312 |
Copyright IEEE |