Autors: Dimitrov, S. I., Lazarova, M. D.
Title: On the distribution of αp4 modulo one over a thin set of primes
Keywords: Distribution modulo one, Exponential sums, Piatetski-Shapiro primes

Abstract: Let [x] denote the integer part of a real number x, and let ‖x‖ represent the distance from x to the nearest integer. We establish that for any irrational number α and any real number β, and for any fixed 99100<γ<1, there exist infinitely many prime numbers p for which the inequality (Formula presented.) holds, where p=[n1/γ].

References

  1. I.M. Vinogradov The method of trigonometrical sums in the theory of numbers Trud. Math. Inst. Steklov 23 1 109 29417 (in Russian)
  2. K. Matomäki The distribution of αp modulo one Math. Proc. Camb. Phil. Soc. 147 267 283 2525926
  3. G. Harman On the distribution of αp modulo one II Proc. London Math. Soc. 72 241 260 1367078
  4. K.C. Wong On the distribution of αpkmodulo 1 Glasg. Math. J. 39 121 130
  5. I.I. Piatetski-Shapiro On the distribution of prime numbers in sequences of the form [f(n)] Mat. Sb. 33 559 566 59302
  6. J. Rivat P. Sargos Nombres premiers de la forme [nc] Can. J. Math. 53 414 433
  7. J. Rivat J. Wu Prime numbers of the form [nc] Glasg. Math. J. 43 2 237 254 1838628
  8. S.I. Dimitrov On the distribution of αp modulo one over Piatetski-Shapiro primes Indian J. Pure Appl. Math. 54 3 858 867 4626038
  9. X. Li J. Li M. Zhang On the distribution of αp modulo one in the intersection of two Piatetski-Shapiro sets Ramanujan J. 65 2 743 758 4800989
  10. Baier, S., Rahaman, H.: Diophantine approximation with Piatetski-Shapiro primes. Preprint at http://arxiv.org/abs/2408.01314
  11. Dimitrov, S.I, Lazarova, M.: On the distribution of α p 2 modulo one over primes of the form [n c]. Preprint at http://arxiv.org/abs/2504.21333
  12. Dimitrov, S.I., Lazarova, M.: On the distribution of αp3modulo one over special primes, hal-05089082
  13. D.R. Heath-Brown The Piatetski-Shapiro prime number theorem J. Number Theory 16 242 266 698168
  14. A. Karatsuba Principles of the Analytic Number Theory Moscow Nauka 1524.11003 (in Russian)
  15. R.C. Vaughan On the distribution of αp modulo 1 Mathematika 24 135 141 472731
  16. D.R. Heath-Brown A new k-th derivative estimate for exponential Sums via Vinogradov’s mean value Proc. Steklov Inst. Math. 296 88 103
  17. H. Iwaniec E. Kowalski Analytic number theory Am. Math. Soc. 53 1 1059.11001
  18. G. Harman Trigonometric sums over primes I Mathematika 28 249 254 645105 0465.10029
  19. J. Li M. Zhang Hua’s theorem with the primes in Piatetski-Shapiro prime sets Int. J. Number Theory 14 193 220 3726249 1428.11177
  20. R.C. Vaughan An elementary method in prime number theory Acta Arith 37 111 115 598869 0448.10037

Issue

Ramanujan Journal, vol. 68, 2025, Netherlands, https://doi.org/10.1007/s11139-025-01195-3

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science