Autors: Dimitrov, S. I. Title: Generalizations of Amicable Numbers Keywords: amicable numbers, sum of divisorsAbstract: In this paper we propose new generalizations of amicable numbers. We also give examples and prove properties of these new concepts. References - W. Beck and R. Najar. More reduced amicable pairs, Fibonacci Quart. 15 (1977), 331– 332.
- J. Bishop, A. Bozarth, R. Kuss, and B. Peet, The abundancy index and feebly amicable numbers, Ball State Undergraduate Mathematics Exchange 15 (2021), 65–77.
- R. D. Carmichael, History of the theory of numbers, Amer. Math. Monthly 26 (1919), 396–403.
- G. L. Cohen, S. Gretton, and P. Hagis, Multiamicable numbers, Math. Comp. 64(1995), 1743–1753.
- L. E. Dickson, Amicable number triples, Amer. Math. Monthly 20 (1913), 84–92.
- P. Erdős, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111.
- P. Erdős and G. Rieger, Ein Nachtrag über befreundete Zahlen, J. Reine Angew. Math. 273 (1975), 220–220.
- M. Garcia, J. Pedersen, and H. Riele, Amicable pairs, a survey, Fields Inst. Commun. 41 (2004), 179–196.
- P. Hagis, Unitary amicable numbers, Math. Comp. 25 (1971), 915–918.
- P. Hagis and G. Lord, Quasi-amicable numbers, Math. Comp. 31, (1977), 608–611.
- M. Lal and A. Forbes, A note on Chowla’s function, Math. Comp. 25 (1971), 923–925.
- T. E. Mason, On amicable numbers and their generalizations, Amer. Math. Monthly 28 (1921), 195–200.
- P. Pollack, Quasi-amicable numbers are rare, J. Integer Sequences 14 (2011), Article 11.5.2.
- C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222.
- C. Pomerance, On the distribution of amicable numbers, II, J. Reine Angew. Math. 325 (1981), 183–188.
- C. Pomerance, On amicable numbers, Analytic Number Theory (Springer, Cham, 2015), 321–327.
- G. Rieger, Bemerkung zu einem Ergebnis von Erdős über befreundete Zahlen, J. Reine Angew. Math. 261 (1973), 157–163.
- N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2025. Available at https://oeis.org.
- B. F. Yanney, Another definition of amicable numbers and some of their relations to Dickson’s amicables, Amer. Math. Monthly 30 (1923), 311–315.
Issue
| Journal of Integer Sequences, vol. 28, 2025, Canada, ISSN 15307638 |
|