Autors: Dimitrov, S. I.
Title: Generalizations of Amicable Numbers
Keywords: amicable numbers, sum of divisors

Abstract: In this paper we propose new generalizations of amicable numbers. We also give examples and prove properties of these new concepts.

References

  1. W. Beck and R. Najar. More reduced amicable pairs, Fibonacci Quart. 15 (1977), 331– 332.
  2. J. Bishop, A. Bozarth, R. Kuss, and B. Peet, The abundancy index and feebly amicable numbers, Ball State Undergraduate Mathematics Exchange 15 (2021), 65–77.
  3. R. D. Carmichael, History of the theory of numbers, Amer. Math. Monthly 26 (1919), 396–403.
  4. G. L. Cohen, S. Gretton, and P. Hagis, Multiamicable numbers, Math. Comp. 64(1995), 1743–1753.
  5. L. E. Dickson, Amicable number triples, Amer. Math. Monthly 20 (1913), 84–92.
  6. P. Erdős, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111.
  7. P. Erdős and G. Rieger, Ein Nachtrag über befreundete Zahlen, J. Reine Angew. Math. 273 (1975), 220–220.
  8. M. Garcia, J. Pedersen, and H. Riele, Amicable pairs, a survey, Fields Inst. Commun. 41 (2004), 179–196.
  9. P. Hagis, Unitary amicable numbers, Math. Comp. 25 (1971), 915–918.
  10. P. Hagis and G. Lord, Quasi-amicable numbers, Math. Comp. 31, (1977), 608–611.
  11. M. Lal and A. Forbes, A note on Chowla’s function, Math. Comp. 25 (1971), 923–925.
  12. T. E. Mason, On amicable numbers and their generalizations, Amer. Math. Monthly 28 (1921), 195–200.
  13. P. Pollack, Quasi-amicable numbers are rare, J. Integer Sequences 14 (2011), Article 11.5.2.
  14. C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222.
  15. C. Pomerance, On the distribution of amicable numbers, II, J. Reine Angew. Math. 325 (1981), 183–188.
  16. C. Pomerance, On amicable numbers, Analytic Number Theory (Springer, Cham, 2015), 321–327.
  17. G. Rieger, Bemerkung zu einem Ergebnis von Erdős über befreundete Zahlen, J. Reine Angew. Math. 261 (1973), 157–163.
  18. N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2025. Available at https://oeis.org.
  19. B. F. Yanney, Another definition of amicable numbers and some of their relations to Dickson’s amicables, Amer. Math. Monthly 30 (1923), 311–315.

Issue

Journal of Integer Sequences, vol. 28, 2025, Canada, ISSN 15307638

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus