Autors: Vlahova-Takova, M. P., Lazarova, M. K.
Title: A Recommender System Model for Presentation Advisor Application Based on Multi-Tower Neural Network and Utility-Based Scoring
Keywords: deep learning, deep Q-network, multi-tower neural network, personalization, presentation improvement, recommender system, utility-based scoring

Abstract: Delivering compelling presentations is a critical skill across academic, professional, and public domains—yet many presenters struggle with structuring content, maintaining visual consistency, and engaging their audience effectively. Existing tools offer isolated support for design or delivery but fail to promote long-term skill development. This paper presents a novel intelligent application, the Presentation Advisor application, powered by a personalized recommendation engine that goes beyond fixing slide content and visualization, enabling users to build presentation competence. The recommendation engine leverages a model based on hybrid multi-tower neural network architecture enhanced with temporal encoding, problem sequence modeling, and utility-based scoring to deliver adaptive context-aware feedback. Unlike current tools, the presented system analyzes user-submitted presentations to detect common issues and delivers curated educational content tailored to user preferences, presentation types, and audiences. The system also incorporates strategic cold-start mitigation, ensuring high-quality recommendations even for new users or unseen content. Comprehensive experimental evaluations demonstrate that the suggested model significantly outperforms content-based filtering, collaborative filtering, autoencoders, and reinforcement learning approaches across both accuracy and personalization metrics. By combining cutting-edge recommendation techniques with a pedagogical framework, the Presentation Advisor application enables users not only to improve individual presentations but to become consistently better presenters over time.

References

  1. Neuxpower: Slidewise PowerPoint Add-In Available online: https://neuxpower.com/slidewise-powerpoint-add-in (accessed on 27 May 2025)
  2. PitchVantage Available online: https://pitchvantage.com (accessed on 27 May 2025)
  3. Ricci F. Rokach L. Shapira B. Recommender systems: Techniques, applications, and challenges Recommender Systems Handbook 3rd ed. Ricci F. Rokach L. Shapira B. Springer New York, NY, USA 2022 1 35
  4. Raza S. Rahman M. Kamawal S. Toroghi A. Raval A. Navah F. Kazemeini A. A comprehensive review of recommender systems: Transitioning from theory to practice arXiv 2024 2407.13699
  5. Fayyaz Z. Ebrahimian M. Nawara D. Ibrahim A. Kashef R. Recommendation systems: Algorithms, challenges, metrics, and business opportunities Appl. Sci. 2020 10 7748 10.3390/app10217748
  6. Saifudin I. Widiyaningtyas T. Systematic literature review on recommender system: Approach, problem, evaluation techniques, datasets IEEE Access 2024 12 19827 19847 10.1109/ACCESS.2024.3359274
  7. Alfaifi Y.H. Recommender systems applications: Data sources, features, and challenges Information 2024 15 660 10.3390/info15100660
  8. Jeong S.-Y. Kim Y.-K. State-of-the-art survey on deep learning-based recommender systems for e-learning Appl. Sci. 2022 12 11996
  9. Zhang Y. Chen X. Explainable recommendation: A survey and new perspectives arXiv 2020 10.48550/arXiv.1804.11192 1804.11192
  10. Ko H. Lee S. Park Y. Choi A. A Survey of recommendation systems: Recommendation models, techniques, and application fields Electronics 2022 11 141 10.3390/electronics11010141
  11. Aljunid M. Manjaiah D. Hooshmand M. Ali W. Shetty A. Alzoubah S. A collaborative filtering recommender systems: Survey Neurocomputing 2025 617 128718 10.1016/j.neucom.2024.128718
  12. Kim T.-Y. Ko H. Kim S.-H. Kim H.-D. Modeling of recommendation system based on emotional information and collaborative filtering Sensors 2021 21 1997 10.3390/s21061997
  13. Beheshti A. Yakhchi S. Mousaeirad S. Ghafari S.M. Goluguri S.R. Edrisi M.A. Towards cognitive recommender systems Algorithms 2020 13 176 10.3390/a13080176
  14. Chicaiza J. Valdiviezo-Diaz P. A comprehensive survey of knowledge graph-based recommender systems: Technologies, development, and contributions Information 2021 12 232 10.3390/info12060232
  15. Troussas C. Krouska A. Tselenti P. Kardaras D.K. Barbounaki S. Enhancing Personalized educational content recommendation through cosine similarity-based knowledge graphs and contextual signals Information 2023 14 505 10.3390/info14090505
  16. Uta M. Felfernig A. Le V. Tran T. Garber D. Lubos S. Burgstaller T. Knowledge-based recommender systems: Overview and research directions Front. Big Data 2024 7 1304439 10.3389/fdata.2024.1304439 38469430
  17. Chaudhari A. Hitham Seddig A. Sarlan A. Raut R. A hybrid recommendation system: A review IEEE Access 2024 12 157107 157126 10.1109/ACCESS.2024.3480693
  18. Mouhiha M. Oualhaj O. Mabrouk A. Combining collaborative filtering and content based filtering for recommendation systems Proceedings of the 2024 11th International Conference on Wireless Networks and Mobile Communications (WINCOM) Leeds, UK 23–25 July 2024
  19. Singh K. Dhawan S. Bali N. An Ensemble learning hybrid recommendation system using content-based, collaborative filtering, supervised learning and boosting algorithms Autom. Control. Comput. Sci. 2024 58 491 505 10.3103/S0146411624700615
  20. Shahbazi Z. Byun Y.C. Toward social media content recommendation integrated with data science and machine learning approach for e-learners Symmetry 2020 12 1798 10.3390/sym12111798
  21. Al-Nafjan A. Alrashoudi N. Alrasheed H. Recommendation System algorithms on location-based social networks: Comparative study Information 2022 13 188 10.3390/info13040188
  22. Bakhshizadeh M. Supporting Knowledge workers through personal information assistance with context-aware recommender systems Proceedings of the 18th ACM Conference on Recommender Systems (RecSys’24) Bari, Italy 14–18 October 2024 1296 1301
  23. Afzal I. Yilmazel B. Kaleli C. An Approach for multi-context-aware multi-criteria recommender systems based on deep learning IEEE Access 2024 12 99936 99948 10.1109/ACCESS.2024.3428630
  24. Shrivastava R. Sisodia D. Nagwani N. Utility optimization-based multi-stakeholder personalized recommendation system Data Technol. Appl. 2022 56 782 805 10.1108/DTA-07-2021-0182
  25. Tansuchat R. Kosheleva O. How to make recommendation systems fair: An adequate utility-based approach Asian J. Econ. Bank. 2022 6 308 313 10.1108/AJEB-03-2022-0031
  26. Gheewala S. Xu S. Yeom S. In-depth survey: Deep learning in recommender systems—exploring prediction and ranking models, datasets, feature analysis, and emerging trends Neural Comput. Appl. 2025 37 10875 10947 10.1007/s00521-024-10866-z
  27. Devika P. Milton A. Book recommendation using sentiment analysis and ensembling hybrid deep learning models Knowl. Inf. Syst. 2025 67 1131 1168 10.1007/s10115-024-02250-z
  28. Tran H. Chen T. Hung N. Huang Z. Cui L. Yin H. A thorough performance benchmarking on lightweight embedding-based recommender systems ACM Trans. Inf. Syst. 2025 43 1 32 10.1145/3712589
  29. Gomez-Uribe C.A. Hunt N. The Netflix recommender system: Algorithms, business value, and innovation ACM Trans. Manag. Inf. Syst. 2015 6 1 19 10.1145/2843948
  30. Steck H. Baltrunas L. Elahi E. Liang D. Raimond Y. Basilico J. Deep learning for recommender systems: A Netflix case study AI Magazine 2021 42 7 18 10.1609/aimag.v42i3.18140
  31. Nagrecha K. Liu L. Delgado P. Padmanabhan P. InTune: Reinforcement learning-based data pipeline optimization for deep recommendation models Proceedings of the 17th ACM Conference on Recommender Systems (RecSys’23) Singapore 18–22 September 2023 430 442
  32. Barwal D. Joshi S. Obaid A.J. Abdulbaqi A.S. Al-Barzinji S.M. Alkhayyat A. Hachem S.K. Muthmainnah The impact of netflix recommendation engine on customer experience AIP Conf. Proc. 2023 2736 060005
  33. Smith B. Linden G. Two decades of recommender systems at Amazon.com IEEE Internet Comput. 2017 21 12 18 10.1109/MIC.2017.72
  34. Hardesty L. The history of Amazon’s recommendation algorithm Amaz. Sci. 2019 Available online: https://www.amazon.science/the-history-of-amazons-recommendation-algorithm (accessed on 18 June 2025)
  35. Zhao J. Wang L. Xiang D. Johanson B. Collaborative denoising auto-encoders for top-N recommender systems Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19) Paris, France 21–25 July 2019
  36. Zhao Z. Fan W. Li J. Liu Y. Mei X. Wang Y. Recommender systems in the era of large language models (LLMs) IEEE Trans. Knowl. Data Eng. 2024 36 6889 6907 10.1109/TKDE.2024.3392335
  37. Lin J. Dai X. Xi Y. Liu W. Chen B. Zhang H. Liu Y. Wu C. Li X. Zhu C. et al. How can recommender systems benefit from large language models: A survey ACM Trans. Inf. Syst. 2025 43 1 47 10.1145/3678004
  38. Pellegrini R. Zhao W. Murray I. Don’t recommend the obvious: Estimate probability ratios Proceedings of the 16th ACM Conference on Recommender Systems (RecSys’22) Seattle, WA, USA 18–23 September 2022 188 197
  39. Zhang Y. Ding H. Shui Z. Ma Y. Zou J. Deoras A. Wang H. Language models as recommender systems: Evaluations and limitations Proceedings of the NeurIPS 2021 Workshop on I (Still) Can’t Believe It’s Not Better Virtual 13 December 2021
  40. Yu T. Ma Y. Deoras A. Achieving diversity and relevancy in zero-shot recommender systems for human evaluations Proceedings of the NeurIPS 2022 Workshop on Human in the Loop Learning New Orleans, LA, USA 2 December 2022
  41. Lessa L.F. Brandao W.C. Filtering Graduate Courses based on LinkedIn Profiles Proceedings of the WebMedia 2018 Salvador, Brazil 16–19 October 2018
  42. Urdaneta-Ponte M.C. Oleagordia-Ruíz I. Méndez-Zorrilla A. Using linkedin endorsements to reinforce an ontology and machine learning-based recommender system to improve professional skills Electronics 2022 11 1190 10.3390/electronics11081190
  43. He X. Liao L. Zhang H. Nie L. Hu X. Chua T.S. Neural collaborative filtering Proceedings of the 26th International Conference on World Wide Web Perth, Australia 3–7 April 2017 173 182
  44. Zhang X. Zhou Y. Ma Y. Chen B.C. Zhang L. Agarwal D. GLMix: Generalized linear mixed models for large-scale response prediction Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco, CA, USA 13–17 August 2016 363 372
  45. Davidson J. Liebald B. Liu J. Nandy P. Van Vleet T. Gargi U. Gupta S. He Y. Lambert M. Livingston B. et al. The YouTube video recommendation system Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10) Barcelona, Spain 26–30 September 2010 293 296
  46. Ma J. Zhao Z. Yi X. Chen J. Hong L. Chi E.H. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining London, UK 19–23 August 2018 1930 1939
  47. Covington P. Adams J. Sargin E. Deep neural networks for YouTube recommendations Proceedings of the 10th ACM Conference on Recommender Systems (RecSys’16) Boston, MA, USA 15–19 September 2016 191 198
  48. Vlahova M. Lazarova M. Collecting a custom database for image classification in recommender systems Proceedings of the 10th International Scientific Conference on Computer Science (COMSCI) Sofia, Bulgaria 30 May–2 June 2022
  49. Green E. The basics of slide design Healthy Presentations Springer Cham, Switzerland 2021 37 62
  50. Duarte N. Slide:ology—The Art and Science of Creating Great Presentations O’Reilly Sebastopol, CA, USA 2008
  51. Gallo G. Talk Like TED: The 9 Public Speaking Secrets of the World’s Top Minds St. Martin’s Press New York, NY, USA 2014
  52. Jambor H. Bornhäuser M. Ten simple rules for designing graphical abstracts PLoS Comput. Biol. 2024 20 e1011789 10.1371/journal.pcbi.1011789
  53. Vlahova-Takova M. Lazarova M. Dual-branch convolutional neural network for image comparison in presentation style coherence Eng. Technol. Appl. Sci. Res. 2025 15 21719 21727 10.48084/etasr.9571
  54. Vlahova-Takova M. Lazarova M. CNN based multi-label image classification for presentation recommender system Int. J. Inf. Technol. Secur. 2024 16 73 84 10.59035/PUYE7368
  55. Bernardini L. Bono F.M. Collina A. Drive-by damage detection based on the use of CWT and sparse autoencoder applied to steel truss railway bridge Adv. Mech. Eng. 2025 17 10.1177/16878132251339857
  56. Qian F. Cui Y. Xu M. Chen H. Chen W. Xu Q. Wu C. Yan Y. Zhao S. IFM: Integrating and fine-tuning adversarial examples of recommendation system under multiple models to enhance their transferability Knowl.-Based Syst. 2025 11 113111 10.1016/j.knosys.2025.113111
  57. Tiep N. Jeong H.-Y. Kim K.-D. Xuan Mung N. Dao N.-N. Tran H.-N. Hoang V.-K. Ngoc Anh N. Vu M. A New Hyperparameter Tuning Framework for Regression Tasks in Deep Neural Network: Combined-Sampling Algorithm to Search the Optimized Hyperparameters Mathematics 2024 12 3892 10.3390/math12243892
  58. Moscati M. Deldjoo Y. Carparelli G. Schedl M. Multiobjective hyperparameter optimization of recommender systems Proceedings of the 3rd Workshop Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES 2023) Singapore 19 September 2023
  59. Panteli A. Boutsinas B. Addressing the cold-start problem in recommender systems based on frequent patterns Algorithms 2023 16 182 10.3390/a16040182
  60. Jeong S.-Y. Kim Y.-K. Deep Learning-Based Context-Aware Recommender System Considering Contextual Features Appl. Sci. 2021 12 45 10.3390/app12010045
  61. Lv X. Fang K. Liu T. Content-aware few-shot meta-learning for cold-start recommendations using cross-modal attention Sensors 2024 24 5510 10.3390/s24175510
  62. Luo Y. Jiang Y. Jiang Y. Chen G. Wang J. Bian K. Li P. Zhang Q. Online item cold-start recommendation with popularity-aware meta-learning Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, V.1 (KDD’25) Toronto, Canada 3–7 August 2025 Association for Computing Machinery New York, NY, USA 927 937
  63. Ding S. Feng F. He X. Liao Y. Shi J. Zhang Y. Causal incremental graph convolution for recommender system retraining IEEE Trans. Neural Netw. Learn. Syst. 2024 35 4718 4728 10.1109/TNNLS.2022.3156066 35294360
  64. Zhang S. Yao L. Sun A. Tay Y. Deep learning-based recommender system: A survey and new perspectives ACM Comput. Surv. 2020 52 1 38 10.1145/3285029
  65. Mnih V. Badia A.P. Mirza M. Graves A. Lillicrap T. Harley T. Silver D. Kavukcuoglu K. Asynchronous methods for deep reinforcement learning Proceedings of the 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research 2016 New York City, NY, USA 19–24 June 2016 Volume 48 1928 1937
  66. TensorFlow Serving Available online: https://github.com/tensorflow/serving (accessed on 18 June 2025)
  67. Parmar T. Implementing CI/CD in Data Engineering: Streamlining Data Pipelines for Reliable and Scalable Solutions Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci. 2025 13 10.2139/ssrn.5190570
  68. Rensing F. Lwakatare L.E. Nurminen J.K. Exploring the application of replay-based continuous learning in a machine learning pipeline Proceedings of the Workshops of the EDBT/ICDT 2025 Joint Conference Barcelona, Spain 25–28 March 2025 Boehm M. Daudjee K.

Issue

Electronics (Switzerland), vol. 14, 2025, Albania, https://doi.org/10.3390/electronics14132528

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science