Autors: Vladkova T.G., Gospodinova, D. N., Dineff P.D., Keremidarska-Markova M., Hristova-Panusheva K., Krasteva N.
Title: Electrospinning of Bovine Split Hide Collagen and Collagen/Glycosaminoglycan for a Study of Stem Cell Adhesion and Proliferation on the Mats: Influence of Composition and Structural Morphology
Keywords: benign solvents, bovine split hide collagen, electrospun fiber mats, glycosaminoglycan, human adipose-derived mesenchymal stem cells

Abstract: Electrospun collagen-based fibrous mats are of increasing interest for cell culture, regenerative medicine, and tissue engineering. The focus of this investigation is on the assessment of the electrospinning ability of bovine split hide collagen (BSHC), the effect of glycosaminoglycan (GAG) incorporation on the mats’ structural morphology, and the impact on the adhesion and proliferation of human adipose-derived mesenchymal stem cells (hAD-MSCs). Electrospun mats were prepared using benign and fluoroalcohol solutions of BSHC and BSHC/GAGs under varied operation conditions. SEM observations and analysis were employed to characterize the structural morphology of the mats. Several parameters were used to evaluate the hAD-MSC behavior: cytotoxicity, cell morphology, cell number and spreading area, cytoskeleton, focal adhesion contacts, and cell proliferation. Electrospinning using benign solvents was impossible. However, fiber mats were successfully prepared from hexafluoropropanol (HFP) solutions. Different structural morphologies and fiber diameters of the electrospun mats were observed depending on the composition and concentration of the electrospinning solutions. Both BSHC and BSHC/GAG mats supported the in vitro adhesion, growth, and differentiation of hAD-MSCs, with some variations based on their composition and structural morphology. The absence of cytotoxicity and the good hAD-MSC adhesiveness make them promising substrates for cell adhesion, proliferation, and further stem cell differentiation.

References

  1. Lu W.P. Guo Y. Lu W.P. Guo Y. Electrospinning of Collagen and Its Derivatives for Biomedical Applications Novel Aspects of Nanofibers IntechOpen London, UK 2018 978-1-78923-075-8
  2. Bianchi S. Bernardi S. Simeone D. Torge D. Macchiarelli G. Marchetti E. Proliferation and Morphological Assessment of Human Periodontal Ligament Fibroblast towards Bovine Pericardium Membranes: An In Vitro Study Materials 2022 15 8284 10.3390/ma15238284
  3. Kai D. Jin G. Prabhakaran M.P. Ramakrishna S. Electrospun Synthetic and Natural Nanofibers for Regenerative Medicine and Stem Cells Biotechnol. J. 2013 8 59 72 10.1002/biot.201200249
  4. Blackstone B.N. Gallentine S.C. Powell H.M. Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review Bioengineering 2021 8 39 10.3390/bioengineering8030039
  5. Hu X. Wu Z. Zhang Z. Yao H. Wang D.-A. Type II Collagen Scaffolds for Tissue Engineering Commun. Mater. 2024 5 149 10.1038/s43246-024-00598-x
  6. Kulkarni M.A. Gangal A.R. Khare S.S. Mundada H.G. Pujari R.R. Electrospun Collagen Based Nanofibrous Mats for Wound Healing: An Integrative Review Biosci. Biotechnol. Res. Asia 2022 19 515 528 10.13005/bbra/3006
  7. Drobota M. Gradinaru L.M. Vlad S. Bargan A. Butnaru M. Angheloiu M. Aflori M. Preparation and Characterization of Electrospun Collagen Based Composites for Biomedical Applications Materials 2020 13 3961 10.3390/ma13183961
  8. Roche S. Ronzière M.-C. Herbage D. Freyria A.-M. Native and DPPA Cross-Linked Collagen Sponges Seeded with Fetal Bovine Epiphyseal Chondrocytes Used for Cartilage Tissue Engineering Biomaterials 2000 22 9 18 10.1016/S0142-9612(00)00084-3
  9. Luo X. Guo Z. He P. Chen T. Li L. Ding S. Li H. Study on Structure, Mechanical Property and Cell Cytocompatibility of Electrospun Collagen Nanofibers Crosslinked by Common Agents Int. J. Biol. Macromol. 2018 113 476 486 10.1016/j.ijbiomac.2018.01.179
  10. Zong X. Bien H. Chung C.-Y. Yin L. Fang D. Hsiao B.S. Chu B. Entcheva E. Electrospun Fine-Textured Scaffolds for Heart Tissue Constructs Biomaterials 2005 26 5330 5338 10.1016/j.biomaterials.2005.01.052 15814131
  11. Hapach L.A. VanderBurgh J.A. Miller J.P. Reinhart-King C.A. Manipulation of in Vitro Collagen Matrix Architecture for Scaffolds of Improved Physiological Relevance Phys. Biol. 2015 12 061002 10.1088/1478-3975/12/6/061002
  12. Zeugolis D.I. Khew S.T. Yew E.S.Y. Ekaputra A.K. Tong Y.W. Yung L.-Y.L. Hutmacher D.W. Sheppard C. Raghunath M. Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin? Biomaterials 2008 29 2293 2305 10.1016/j.biomaterials.2008.02.009
  13. Dong B. Arnoult O. Smith M.E. Wnek G.E. Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents Macromol. Rapid Commun. 2009 30 539 542 10.1002/marc.200800634
  14. Arnoult O. A Novel Benign Solution for Collagen Processing Ph.D. Thesis Case Western Reserve University Cleveland, OH, USA 2010
  15. Visser D. Rogg K. Fuhrmann E. Marzi J. Schenke-Layland K. Hartmann H. Electrospinning of Collagen: Enzymatic and Spectroscopic Analyses Reveal Solvent-Independent Disruption of the Triple-Helical Structure J. Mater. Chem. B 2023 11 2207 2218 10.1039/D2TB02602C
  16. Melo P. Montalbano G. Boggio E. Gigliotti C.L. Dianzani C. Dianzani U. Vitale-Brovarone C. Fiorilli S. Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling Polymers 2022 14 3780 10.3390/polym14183780
  17. Caliari S.R. Ramirez M.A. Harley B.A.C. The Development of Collagen-GAG Scaffold-Membrane Composites for Tendon Tissue Engineering Biomaterials 2011 32 8990 8998 10.1016/j.biomaterials.2011.08.035
  18. Harley B.A.C. Gibson L.J. In Vivo and in Vitro Applications of Collagen-GAG Scaffolds Chem. Eng. J. 2008 137 102 121 10.1016/j.cej.2007.09.009
  19. Yang P. Lu Y. Gou W. Qin Y. Tan J. Luo G. Zhang Q. Glycosaminoglycans’ Ability to Promote Wound Healing: From Native Living Macromolecules to Artificial Biomaterials Adv. Sci. 2024 11 2305918 10.1002/advs.202305918
  20. Tierney C.M. Haugh M.G. Liedl J. Mulcahy F. Hayes B. O’Brien F.J. The Effects of Collagen Concentration and Crosslink Density on the Biological, Structural and Mechanical Properties of Collagen-GAG Scaffolds for Bone Tissue Engineering J. Mech. Behav. Biomed. Mater. 2009 2 202 209 10.1016/j.jmbbm.2008.08.007
  21. Murphy C.M. Haugh M.G. O’Brien F.J. The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen–Glycosaminoglycan Scaffolds for Bone Tissue Engineering Biomaterials 2010 31 461 466 10.1016/j.biomaterials.2009.09.063 19819008
  22. Lungu A. Albu M.G. Florea N.M. Stancu I.C. Vasile E. Iovu H. The Influence of Glycosaminoglycan Type on the Collagen-Glycosaminoglycan Porous Scaffolds Dig. J. Nanomater. Biostructures 2011 6 1867 1875
  23. Law J.X. Liau L.L. Saim A. Yang Y. Idrus R. Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering Tissue Eng. Regen. Med. 2017 14 699 718 10.1007/s13770-017-0075-9
  24. Anderegg U. Halfter N. Schnabelrauch M. Hintze V. Collagen/Glycosaminoglycan-Based Matrices for Controlling Skin Cell Responses Biol. Chem. 2021 402 1325 1335 10.1515/hsz-2021-0176
  25. Tören E. Mazari A.A. Needless Electrospun Collagen/Hyaluronic Acid Nanofibers for Skin Moisturization: Research Polym. Adv. Technol. 2024 35 e6434 10.1002/pat.6434
  26. Yannas I.V. Tzeranis D.S. So P.T.C. Regeneration Mechanism for Skin and Peripheral Nerves Clarified at the Organ and Molecular Scales Curr. Opin. Biomed. Eng. 2018 6 1 7 10.1016/j.cobme.2017.12.002
  27. Menard C. Mitchell S. Spector M. Contractile Behavior of Smooth Muscle Actin-Containing Osteoblasts in Collagen-GAG Matrices in Vitro: Implant-Related Cell Contraction Biomaterials 2000 21 1867 1877 10.1016/S0142-9612(00)00062-4
  28. Pfeiffer E. Vickers S.M. Frank E. Grodzinsky A.J. Spector M. The Effects of Glycosaminoglycan Content on the Compressive Modulus of Cartilage Engineered in Type II Collagen Scaffolds Osteoarthr. Cartil. 2008 16 1237 1244 10.1016/j.joca.2008.02.014
  29. Caliari S.R. Harley B.A.C. The Effect of Anisotropic Collagen-GAG Scaffolds and Growth Factor Supplementation on Tendon Cell Recruitment, Alignment, and Metabolic Activity Biomaterials 2011 32 5330 5340 10.1016/j.biomaterials.2011.04.021
  30. Todd E.A. Mirsky N.A. Silva B.L.G. Shinde A.R. Arakelians A.R.L. Nayak V.V. Marcantonio R.A.C. Gupta N. Witek L. Coelho P.G. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions J. Funct. Biomater. 2024 15 280 10.3390/jfb15100280
  31. Dewey M.J. Kolliopoulos V. Ngo M.T. Harley B.A.C. Glycosaminoglycan Content of a Mineralized Collagen Scaffold Promotes Mesenchymal Stem Cell Secretion of Factors to Modulate Angiogenesis and Monocyte Differentiation Materialia 2021 18 101149 10.1016/j.mtla.2021.101149
  32. Keogh M.B. O’Brien F.J. Daly J.S. Substrate Stiffness and Contractile Behaviour Modulate the Functional Maturation of Osteoblasts on a Collagen–GAG Scaffold Acta Biomater. 2010 6 4305 4313 10.1016/j.actbio.2010.06.001
  33. Tierney C.M. Jaasma M.J. O’Brien F.J. Osteoblast Activity on Collagen-GAG Scaffolds Is Affected by Collagen and GAG Concentrations J. Biomed. Mater. Res. Part A 2009 91A 92 101 10.1002/jbm.a.32207
  34. Murphy C.M. Duffy G.P. Schindeler A. O’brien F.J. Effect of Collagen-Glycosaminoglycan Scaffold Pore Size on Matrix Mineralization and Cellular Behavior in Different Cell Types J. Biomed. Mater. Res. Part A 2016 104 291 304 10.1002/jbm.a.35567
  35. Osmond M.J. Krebs M.D. Pantcheva M.B. Human Trabecular Meshwork Cell Behavior Is Influenced by Collagen Scaffold Pore Architecture and Glycosaminoglycan Composition Biotechnol. Bioeng. 2020 117 3150 3159 10.1002/bit.27477
  36. O’Brien F.J. Harley B.A. Yannas I.V. Gibson L.J. The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds Biomaterials 2005 26 433 441 10.1016/j.biomaterials.2004.02.052
  37. Li Z. Hu X. Zhong J.F. Mesenchymal Stem Cells: Characteristics, Function, and Application Stem Cells Int. 2019 2019 8106818 10.1155/2019/8106818
  38. Tanabe S. Role of Mesenchymal Stem Cells in Cell Life and Their Signaling World J. Stem Cells 2014 6 24 32 10.4252/wjsc.v6.i1.24
  39. Koczkowska M. Kostecka A. Zawrzykraj M. Myszczyński K. Skoniecka A. Deptuła M. Tymińska A. Czerwiec K. Jąkalski M. Zieliński J. et al. Identifying Differentiation Markers Between Dermal Fibroblasts and Adipose-derived Mesenchymal Stromal Cells (AD-MSCs) in Human Visceral and Subcutaneous Tissues Using Single-cell Transcriptomics Stem Cell Res. Ther. 2025 16 64 73 10.1186/s13287-025-04185-w
  40. Alcayaga-Miranda F. Cuenca J. Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies Front. Immunol. 2017 8 339 10.3389/fimmu.2017.00339
  41. Zuk P.A. Zhu M. Mizuno H. Huang J. Futrell J.W. Katz A.J. Benhaim P. Lorenz H.P. Hedrick M.H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies Available online: https://www.liebertpub.com/doi/10.1089/107632701300062859 (accessed on 7 April 2025)
  42. Kern S. Eichler H. Stoeve J. Klüter H. Bieback K. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue Stem Cells 2006 24 1294 1301 10.1634/stemcells.2005-0342 16410387
  43. Lee S.Y. Kwon B. Lee K. Son Y.H. Chung S.G. Therapeutic Mechanisms of Human Adipose-Derived Mesenchymal Stem Cells in a Rat Tendon Injury Model Am. J. Sports Med. 2017 45 1429 1439 10.1177/0363546517689874 28291954
  44. Melief S.M. Zwaginga J.J. Fibbe W.E. Roelofs H. Adipose Tissue-Derived Multipotent Stromal Cells Have a Higher Immunomodulatory Capacity Than Their Bone Marrow-Derived Counterparts Stem Cells Transl. Med. 2013 2 455 463 10.5966/sctm.2012-0184
  45. Doshi J. Reneker D.H. Electrospinning Process and Applications of Electrospun Fibers J. Electrost. 1995 35 151 160 10.1016/0304-3886(95)00041-8
  46. Castilla-Casadiego D.A. Rivera-Martínez C.A. Quiñones-Colón B.A. Almodóvar J. Electrospun Collagen Scaffolds Electrospun Biomaterials and Related Technologies Almodovar J. Springer International Publishing Cham, Switzerland 2017 21 55 978-3-319-70049-6
  47. Huang G.P. Shanmugasundaram S. Masih P. Pandya D. Amara S. Collins G. Arinzeh T.L. An Investigation of Common Crosslinking Agents on the Stability of Electrospun Collagen Scaffolds J. Biomed. Mater. Res. Part A 2015 103 762 771 10.1002/jbm.a.35222
  48. Campiglio C.E. Marcolin C. Draghi L. Campiglio C.E. Marcolin C. Draghi L. Electrospun ECM Macromolecules as Biomimetic Scaffold for Regenerative Medicine: Challenges for Preserving Conformation and Bioactivity AIMS Mater. Sci. 2017 4 638 669 10.3934/matersci.2017.3.638
  49. Yannas I.V. Lee E. Orgill D.P. Skrabut E.M. Murphy G.F. Synthesis and Characterization of a Model Extracellular Matrix That Induces Partial Regeneration of Adult Mammalian Skin Proc. Natl. Acad. Sci. USA 1989 86 933 937 10.1073/pnas.86.3.933
  50. Zhong S. Teo W.E. Zhu X. Beuerman R. Ramakrishna S. Yung L.Y.L. Formation of Collagen−Glycosaminoglycan Blended Nanofibrous Scaffolds and Their Biological Properties Biomacromolecules 2005 6 2998 3004 10.1021/bm050318p
  51. Tian H. Chen Y. Ding C. Li G. Interaction Study in Homogeneous Collagen-Chondroitin sulfate Blends by Twodimensional Infrared Spectroscopy Carbohydr. Polym. 2012 89 542 550 10.1016/j.carbpol.2012.03.042
  52. ISO 10993-5:2009 International Standard: Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity International Organization for Standardization Geneva, Switzerland 2009
  53. Zhang L. Webster T.J. Nanotechnology and Nanomaterials: Promises for Improved Tissue Regeneration Nano Today 2009 4 66 80 10.1016/j.nantod.2008.10.014
  54. Fröhlich E. Salar-Behzadi S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, Ex Vivo, in Vitro, and in Silico Studies Int. J. Mol. Sci. 2014 15 4795 4822 10.3390/ijms15034795
  55. Clift M.J.D. Rothen-Rutishauser B. Brown D.M. Duffin R. Donaldson K. Proudfoot L. Guy K. Stone V. The Impact of Different Nanoparticle Surface Chemistry and Size on Uptake and Toxicity in a Murine Macrophage Cell Line Toxicol. Appl. Pharmacol. 2008 232 418 427 10.1016/j.taap.2008.06.009
  56. Armour A.D. Powell H.M. Boyce S.T. Fluorescein Diacetate for Determination of Cell Viability in Tissue-Engineered Skin Tissue Eng. Part C Methods 2008 14 89 96 10.1089/tec.2007.0228
  57. Dalton C.J. Lemmon C.A. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling Cells 2021 10 2443 10.3390/cells10092443
  58. Pankov R. Yamada K.M. Fibronectin at a Glance J. Cell Sci. 2002 115 3861 3863 10.1242/jcs.00059
  59. Aota S. Yamada K.M. Fibronectin and Cell Adhesion: Specificity of Integrin–Ligand Interaction Advances in Enzymology and Related Areas of Molecular Biology John Wiley & Sons, Ltd. Hoboken, NJ, USA 1995 1 21 978-0-470-12316-4
  60. Baer P.C. Geiger H. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity Stem Cells Int. 2012 2012 812693 10.1155/2012/812693
  61. Geiger B. Bershadsky A. Pankov R. Yamada K.M. Transmembrane Crosstalk between the Extracellular Matrix and the Cytoskeleton Nat. Rev. Mol. Cell Biol. 2001 2 793 805 10.1038/35099066
  62. Barnes C.P. Sell S.A. Boland E.D. Simpson D.G. Bowlin G.L. Nanofiber Technology: Designing the next Generation of Tissue Engineering Scaffolds Adv. Drug Deliv. Rev. 2007 59 1413 1433 10.1016/j.addr.2007.04.022
  63. Matthews J.A. Wnek G.E. Simpson D.G. Bowlin G.L. Electrospinning of Collagen Nanofibers Biomacromolecules 2002 3 232 238 10.1021/bm015533u
  64. Denchai A. Tartarini D. Mele E. Cellular Response to Surface Morphology: Electrospinning and Computational Modeling Front. Bioeng. Biotechnol. 2018 24 155 10.3389/fbioe.2018.00155
  65. Schnell E. Klinkhammer K. Balzer S. Brook G. Klee D. Dalton P. Mey J. Guidance of Glial Cell Migration and Axonal Growth on Electrospun Nanofibers of Poly-ε-Caprolactone and a Collagen/Poly-ε-Caprolactone Blend Biomaterials 2007 28 3012 3025 10.1016/j.biomaterials.2007.03.009
  66. Gourlay C.W. Ayscough K.R. The Actin Cytoskeleton: A Key Regulator of Apoptosis and Ageing? Nat. Rev. Mol. Cell Biol. 2005 6 583 589 10.1038/nrm1682
  67. Paim Á. Tessaro I.C. Cardozo N.S.M. Pranke P. Mesenchymal Stem Cell Cultivation in Electrospun Scaffolds: Mechanistic Modeling for Tissue Engineering J. Biol. Phys. 2018 44 245 271 10.1007/s10867-018-9482-y
  68. Bershadsky A.D. Balaban N.Q. Geiger B. Adhesion-Dependent Cell Mechanosensitivity Annu. Rev. Cell Dev. Biol. 2003 19 677 695 10.1146/annurev.cellbio.19.111301.153011
  69. Parsons J.T. Horwitz A.R. Schwartz M.A. Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension Nat. Rev. Mol. Cell Biol. 2010 11 633 643 10.1038/nrm2957
  70. Huang Z.-M. Zhang Y.-Z. Kotaki M. Ramakrishna S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites Compos. Sci. Technol. 2003 63 2223 2253 10.1016/S0266-3538(03)00178-7
  71. Zhao Y. Sun Q. Huo B. Focal Adhesion Regulates Osteogenic Differentiation of Mesenchymal Stem Cells and Osteoblasts Biomater. Transl. 2021 2 312 322 10.12336/biomatertransl.2021.04.007
  72. Zaidel-Bar R. Itzkovitz S. Ma’ayan A. Iyengar R. Geiger B. Functional Atlas of the Integrin Adhesome Nat. Cell Biol. 2007 9 858 867 10.1038/ncb0807-858
  73. Chung E. Yoon G. (Matthew) Suh H. A Collagen-Hyaluronic Acid Matrix for Stem Cell Culture Biological, Physical and Technical Basics of Cell Engineering Artmann G. Artmann A. Zhubanova A. Digel I. Springer Singapore 2018 10.1007/978-981-10-7904-7_4
  74. Murphy C.M. Matsiko A. Haugh M.G. Gleeson J.P. O’Brien F.J. Mesenchymal Stem Cell Fate is Regulated by the Composition and Mechanical Properties of Collagen-Glycosaminoglycan Scaffolds J. Mech. Behav. Biomed. Mater. 2012 11 53 62 10.1016/j.jmbbm.2011.11.009
  75. Amann E. Wolff P. Breel E. Van Griensven M. Balmayor E.R. Hyaluronic Acid Facilitates chondrogenesis and Matrix Deposition of Human Adipose Derived Mesenchymal Stem Cells and Human Chondrocytes Co-cultures Acta Biomater. 2017 52 130 144 10.1016/j.actbio.2017.01.064
  76. He X. Wang S. Yu X. Zhou X. Bone Marrow Mesenchymal Stem Cells Response on Collagen/hyaluronan/chondroitin Scaffold Enriched with Gentamicin-loaded Gelatin Microparticles for Skin Ttissue Engineering J. Biomater. Appl. 2023 38 134 145 10.1177/08853282231180714
  77. Somaiah C. Kumar A. Mawrie D. Sharma A. Patil S.D. Bhattacharyya J. Swaminathan R. Jaganathan B.G. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells PLoS ONE 2015 10 e0145068 10.1371/journal.pone.0145068
  78. Kennedy K.M. Bhaw-Luximon A. Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance Acta Biomater. 2017 50 41 55 28011142 10.1016/j.actbio.2016.12.034

Issue

Journal of Functional Biomaterials, vol. 16, 2025, Albania, https://doi.org/10.3390/jfb16060219

Цитирания (Citation/s):
1. Chen K., Xu Y., Pang S.W., Enhanced Unidirectional Cell Migration Induced by Asymmetrical Micropatterns with Nanostructures, 2025, Journal of Functional Biomaterials, issue 9, vol. 16, DOI 10.3390/jfb16090323, eissn 20794983 - 2025 - в издания, индексирани в Scopus и/или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science