Autors: Hristov, A. V., Trifonov, R. I. Title: A model for identification of compromised devices as result of cyberattack on IoT devices Keywords: Artificial Intelligence, Information Security, IoT Abstract: The present paper aims to propose an intelligent system for identification of compromised Internet of Things (IoT) devices due to cyberattack, using Wavelet transformation and Haar filter. Monitoring is being made and the state is identified through time-synchronized series of indexes for usage of processor, memory and network interface card. Using system monitor the time-synchronized indexes of non-compromised IoT devices are saved as well as indexes of compromised IoT devices due to some well-known cyberattacks in Internet of Things are saved. The parameters of the proposed system are being specified in order to distinguish (filter) the two states of the IoT devices (non-compromised or compromised) by these indexes. References
Issue
Full text of the publication |
Цитирания (Citation/s):
1. 1) Romansky, R. Formalization and Investigation of Parallel Processes Dispatching, Proceedings of the 2022 International Conference on Information Technologies (InfoTech-2022), IEEE Conference, Rec # 55606,September 2022, DOI: 10.1109/InfoTech55606.2022.9897104 - 2022 - в издания, индексирани в Scopus и/или Web of Science
2. 2) Lysenko, S., K. Bobrovnikova, V. Kharchenko, Ol. Savenko IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms: Traffic Features Analysis, Experiments, and Efficiency, Algorithms 2022, 15, 239, DOI: 10.3390/a15070239 - 2022 - в издания, индексирани в Scopus и/или Web of Science
3. 3) Hristov, V., H. Stefanov, Generalization of a Genetic Algorithm for Optimal Coding of the States of a Finite State Machine, Proceedings of the 11th International Scientific Conference COMPUTER SCIENCE, IEEE Conference, Rec # 59259, 18 – 20 September 2023, Sozopol, Bulgaria, DOI: 10.1109/COMSCI59259.2023.10315911 - 2023 - в издания, индексирани в Scopus и/или Web of Science
4. 5) Mert Nakıp, Erol Gelenbe, "Online Self-Supervised Deep Learning for Intrusion Detection Systems", IEEE Transactions on Information Forensics and Security, vol.19, pp.5668-5683, 2024., DOI: 10.1109/TIFS.2024.3402148 - 2024 - в издания, индексирани в Scopus и/или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus