Autors: Percuku, A., Minkovska, D. V., Hinov, N. L. Title: Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning Keywords: electricity load, linear regression algorithm, long short-term memory algorithm, short-term forecasting References Issue
|
Цитирания (Citation/s):
1. Veeramsetty, V, Konda, PK, Dongari, RC, Salkuti, SR, Short-Term Load Forecasting in Distribution Substation Using Autoencoder and Radial Basis Function Neural Networks: A Case Study in India, COMPUTATION, vol 13, 2025, eissn: 2079-3197, art_no: ARTN 75, doi: 10.3390/computation13030075 - 2025 - в издания, индексирани в Scopus и/или Web of Science
2. Timur, O, Üstünel, HY, Short-Term Electric Load Forecasting for an Industrial Plant Using Machine Learning-Based Algorithms, ENERGIES, vol 18, 2025, eissn: 1996-1073, art_no: ARTN 1144, doi: 10.3390/en18051144 - 2025 - в издания, индексирани в Scopus и/или Web of Science
3. Zelios V., Mastorocostas P., Kandilogiannakis G., Kesidis A., Tselenti P., Voulodimos A., Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks, 2025, Electronics Switzerland, issue 14, vol. 14, DOI 10.3390/electronics14142820, eissn 20799292 - 2025 - в издания, индексирани в Scopus и/или Web of Science
4. Cruz, YJ, Castaño, F, Haber, RE, Long Short-Term Memory Mixture Density Network for Remaining Useful Life Prediction of IGBTs, TECHNOLOGIES, vol 13, 2025, eissn: 2227-7080, art_no: ARTN 321, doi: 10.3390/technologies13080321 - 2025 - в издания, индексирани в Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science