Autors: Arabadzhiev, T. N., Uzunov, I. M.
Title: Dissipative Solitons in the Presence of Nonlinear Gain and Higher-order Effects
Keywords:

Abstract: By using the complex cubic-quintic Ginzburg-Landau equation and varying the nonlinear gain (NG) and intrapulse Raman scattering (IRS), a parametric space of the existence of stationary dissipative solitons has been established. The solitons’ dynamics have been revealed in terms of stationary amplitude, width, frequency, and velocity. The influence of self-steepening (SS) and third-order dispersion (TOD) has been also investigated. The simulations have shown that the amplitude of the solitons increases with increasing the NG and decreasing IRS, while the width of the solitons decreases under the same conditions. Additionally, the frequency shift and velocity of the solitons increase with increasing values of both NG and IRS. Such a dependence is characteristic only in the presence of the non-linear correction terms. The influence of TOD increases the impact of the nonlinear gain on the changes of the frequency and velocity while SS mainly affects the velocity. A good correlation between direct numerical data and dynamic analysis has been observed.

References

  1. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2013).
  2. H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, Phys. Rev A, vol. 65, 063811 (2002)
  3. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev E 72, 025604(R) (2005)
  4. N. N. Akhmediev, J. M. Soto-Crespo, and G. Town, Phys. Rev. E 63, 056602 (2001).
  5. M. Miyagi and S. Nishida, Appl. Optics, 18, 13 (1979)
  6. Yang, G., Shen, Y.R., Opt. Lett. 9, 510 (1984).
  7. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000)
  8. I. M. Uzunov, T. N. Arabadzhiev, S. G. Nikolov, Optik, 271, 170137, (2022)
  9. I. M. Uzunov, and T.N. Arabadzhiev, Applied Physics B 125(11), 221 (2019).
  10. H. Tian, Z. Li, Z. Hu, J. Tian and G. Zhou, J. Opt. Soc. Am. B 20, 59 (2003)
  11. S. C. V. Latas and M. F. S. Ferreira, Opt. Commun. 251, 415 (2005).
  12. M. V. Facao and M. I. Carvalho, Phys. Lett. A 376, 950 (2012).
  13. I. M. Uzunov, T.N. Arabadzhiev, Zh.D. Georgiev, Proceedings of SPIE, 94471G (2015)
  14. I. M. Uzunov, T.N. Arabadzhiev, and Zh. D. Georgiev, Opt. Fib.Techn. 24, 15 (2015)
  15. T. P. Horikis and M. J. Ablowitz, J. Opt. Soc. Am. B 31, 2748-2753 (2014).
  16. S. C. Latas, M.F.S. Ferreira, M. Facao, JOSA B, 34, 5, 1033-1040 (2017)
  17. V. V. Afanasjev, Opt. Lett. 20, 704 (1995).
  18. O. Descalzi, J. Cisternas and H. R. Rand, Phys. Rev. E 100, 052218 (2019)
  19. I. M. Uzunov I. M., Georgiev Zh. D., Arabadzhiev T.N., Phys. Rev. E 97 (5), 052215 (2018).
  20. I. M. Uzunov and T. N. Arabadzhiev, Phys. Rev. E 103 (2), 022208 (2021).
  21. I. M. Uzunov, and T. N. Arabadzhiev, Physics of Wave Phenom., vol. 28, No. 4, 338 (2020)
  22. I. M. Uzunov, Zh. D. Georgiev, and T.N. Arabadzhiev, Phys. Rev. E 90, 042906 (2014)
  23. I. M. Uzunov, and S.G. Nikolov, Journal of Modern Optics, vol. 67:7, 606, (2020)
  24. M. J. Potasek, G.P. Agrawal, and S.C. Pinault, J. Opt. Soc. Am. B 3, 205 (1986)
  25. I. M. Uzunov, and T.N. Arabadzhiev, Opt. and Quant. Electron. 51, 283 (2019)

Issue

AIP Conference Proceedings, vol. 3182, pp. 3182, 080001, 2025, United States, https://doi.org/10.1063/5.0246516

Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus