Autors: Stoynov, Y. D.
Title: 2D Wave Scattering in Magneto-Electro-Elastic Half-Plane
Keywords:

Abstract: Magneto - electro - elastic materials (MEEM) have wide range of applications in modern smart structures such as sensors, actuators, damage detectors etc. Here we will consider wave scattering in magneto - electro - elastic half - plane, graded quadratically and exponentially, subjected to anti - plane mechanical and in - plane electric and magnetic time - harmonic external load. The derived solutions can be used in computational schemes based on boundary integral equation method (BIEM) for numerical solutions at macro - and nano - level.

References

  1. Ce-Wen Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland and G. Srinivasan, Multiferoic magnetoelectric composites: Historical perspectives, status and future directions, J. Appl. Phys., 103, 031101(2008).
  2. M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Arch. Rational Mech. Anal., 57, pp.291-323 (1975).
  3. M. E. Gurtin and A. I. Murdoch, Surface stress in solids, Int. J. Solids Str., 14, pp. 431-440 (1978).
  4. R.K.N.D. Rajapakse and Y. Wang, Elastodinamic Green’s functions of orthotropic half plane, Journal of engineering mechanics, 117(3), pp. 588-604(1991).
  5. T. V. Rangelov and G. D. Manolis, Point force and dipole solutions in inhomogeneous half-plane under time harmonic conditions, Mechanics Research Comunications, 56, pp. 90-97 (2014).
  6. G. D. Manolis, P. S. Dineva, T. V. Rangelov, F. Wuttke, Seismic Wave Propagation in Non - Homogeneous Elastic Media by Boundary Elements, Solid Mechanics and its Applications, v. 240, Springer Int. Publ., Cham, Switzerland,2017.
  7. T. Rangelov and P. Dineva, Green’s Function and Wave Scattering in Inhomogeneous Anti-plane PEM Half-Plane, New Trends in the Applications of Differential Equations in Sciences, NTADES 2022, Springer Proceedings in Mathematics and Statistics, vol. 412, pp. 117-127, Springer, Cham, 2023.
  8. R. Rojas-Díaz, A. Sáez, F. García-Sánches, Ch. Zhang, Time-harmonic Green’s function for anisotropic magnetoelectroelasticity, International Journal of Solids and Structures, 45, pp. 144-158(2008).
  9. A. K. Soh and J. X. Liu, On the constitutive equations of magnetoelectroelastic solids, J. Intell. Mater. Syst. Struct., 16, pp. 597 - 602 (2005).
  10. V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity, Gordon and Breach Sci. Publ. New York (1988).
  11. Baolin Wang and Jiecai Han, Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials, Acta Mech Sinica, 22, pp.233-242(2006).
  12. G. D. Manolis and R. Shaw, Green’s function for a vector wave equation in mildly heterogeneous continuum, Wave Motion 24, 59-83(1996).
  13. V. Vladimirov, Equations of mathematical physics, Marcel Dekker, Inc., New York, 1971.
  14. I. Gradsteyn and I. Ryzhik, Tables of integrals, series and products, Academic Press, New York, 1965.
  15. T. Rangelov, Y. Stoynov and P. Dineva, Dynamic fracture behavior of functionally graded magnetoelectroelastic solids by BIEM, Int. J. Solids Str., 48, pp. 2987-2999 (2011).

Issue

AIP Conference Proceedings, vol. 3182, pp. 090011-1 - 090011-8, 2025, United States, https://doi.org/10.1063/5.0245898

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus