Autors: Stoynov, Y. D. Title: 2D Wave Scattering in Magneto-Electro-Elastic Half-Plane Keywords: Abstract: Magneto - electro - elastic materials (MEEM) have wide range of applications in modern smart structures such as sensors, actuators, damage detectors etc. Here we will consider wave scattering in magneto - electro - elastic half - plane, graded quadratically and exponentially, subjected to anti - plane mechanical and in - plane electric and magnetic time - harmonic external load. The derived solutions can be used in computational schemes based on boundary integral equation method (BIEM) for numerical solutions at macro - and nano - level. References - Ce-Wen Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland and G. Srinivasan, Multiferoic magnetoelectric composites: Historical perspectives, status and future directions, J. Appl. Phys., 103, 031101(2008).
- M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Arch. Rational Mech. Anal., 57, pp.291-323 (1975).
- M. E. Gurtin and A. I. Murdoch, Surface stress in solids, Int. J. Solids Str., 14, pp. 431-440 (1978).
- R.K.N.D. Rajapakse and Y. Wang, Elastodinamic Green’s functions of orthotropic half plane, Journal of engineering mechanics, 117(3), pp. 588-604(1991).
- T. V. Rangelov and G. D. Manolis, Point force and dipole solutions in inhomogeneous half-plane under time harmonic conditions, Mechanics Research Comunications, 56, pp. 90-97 (2014).
- G. D. Manolis, P. S. Dineva, T. V. Rangelov, F. Wuttke, Seismic Wave Propagation in Non - Homogeneous Elastic Media by Boundary Elements, Solid Mechanics and its Applications, v. 240, Springer Int. Publ., Cham, Switzerland,2017.
- T. Rangelov and P. Dineva, Green’s Function and Wave Scattering in Inhomogeneous Anti-plane PEM Half-Plane, New Trends in the Applications of Differential Equations in Sciences, NTADES 2022, Springer Proceedings in Mathematics and Statistics, vol. 412, pp. 117-127, Springer, Cham, 2023.
- R. Rojas-Díaz, A. Sáez, F. García-Sánches, Ch. Zhang, Time-harmonic Green’s function for anisotropic magnetoelectroelasticity, International Journal of Solids and Structures, 45, pp. 144-158(2008).
- A. K. Soh and J. X. Liu, On the constitutive equations of magnetoelectroelastic solids, J. Intell. Mater. Syst. Struct., 16, pp. 597 - 602 (2005).
- V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity, Gordon and Breach Sci. Publ. New York (1988).
- Baolin Wang and Jiecai Han, Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials, Acta Mech Sinica, 22, pp.233-242(2006).
- G. D. Manolis and R. Shaw, Green’s function for a vector wave equation in mildly heterogeneous continuum, Wave Motion 24, 59-83(1996).
- V. Vladimirov, Equations of mathematical physics, Marcel Dekker, Inc., New York, 1971.
- I. Gradsteyn and I. Ryzhik, Tables of integrals, series and products, Academic Press, New York, 1965.
- T. Rangelov, Y. Stoynov and P. Dineva, Dynamic fracture behavior of functionally graded magnetoelectroelastic solids by BIEM, Int. J. Solids Str., 48, pp. 2987-2999 (2011).
Issue
| AIP Conference Proceedings, vol. 3182, pp. 090011-1 - 090011-8, 2025, United States, https://doi.org/10.1063/5.0245898 |
|