Autors: Pandiev, I. M., Aleksandrova, M. P., Kurtev, N. A., Rizanov, S. M.
Title: Analysis of Circuit Configurations Suitable for Self-Supplied AC-DC Converters Using Thin-Film Piezoelectric Generators and Multilayer Energy Storage Supercapacitors
Keywords: energy harvesting, piezoelectric generator, power management circuits, self-powered, signal processing, thin-film, wearable devices

Abstract: The improvement of microelectronic technologies and the practical application of some new materials has resulted in the realization of various highly efficient thin-film energy harvesters in the last few years. Self-powered supplies intended to work with thin-film harvesters have been developed. This type of power supply with integrated various thin-film harvesters has proven to be very suitable for providing electrical energy for wearable electronic sensor systems, with practical applications for implementing personalized medicine through continuously monitoring an individual’s state of health. The application of wearable electronics in medicine will become increasingly important in the next few years, as it can support timely decision-making, especially in high-risk patients. This paper presents a review and comparative analysis of the optimal circuit configurations used to design power supply devices with discrete and integrated components, obtaining electrical power from various thin-film piezoelectric generators, and storing electrical energy in low-power multilayer supercapacitors. Based on an analysis of the principle of operation of the selected circuit configurations, analytical expressions for the basic static and dynamic parameters have been obtained, taking into account the peculiarities of their integration with the biomedical signal processing system. Advantages and weaknesses are analyzed through simulation testing for each configuration, as the prospects for improvement are outlined. Also, for each group of circuit configurations, the key parameters and characteristics of recent high-impact papers, especially those focusing on low-power applications, are presented and analyzed in tabular form. As a result of the analysis of the various circuit configurations, some analytical recommendations have been defined regarding the optimal selection of passive and active elements, which can contribute to a better understanding of the design principles of battery-free power supplies converting electrical energy from some specific recently developed thin-film energy harvesters.

References

  1. Kang M. Yeo W.-H. Advances in Energy Harvesting Technologies for Wearable Devices Micromachines 2024 15 884 10.3390/mi15070884 39064395
  2. Kong T. Hedayatipour A. Oximeter for All: An Innovative Look in Inclusive Physiological Monitoring IEEE Circuits Syst. Mag. 2024 24 43 44 10.1109/MCAS.2024.3363608
  3. Durbha R. Koomson V. ChromaSense-Empowering Health, Empowering You IEEE Circuits Syst. Mag. 2024 24 45 46 10.1109/MCAS.2024.3360025
  4. Nangobi Z. Rodgers M. Nadunga C. Your Health Application IEEE Circuits Syst. Mag. 2024 24 47 48 10.1109/MCAS.2024.3360960
  5. Fu H. Jiang J. Hu S. Rao J. Theodossiades S. A multi-stable ultra-low frequency energy harvester using a nonlinear pendulum and piezoelectric transduction for self-powered sensing Mech. Syst. Signal Process. 2023 189 110034 10.1016/j.ymssp.2022.110034
  6. Shuvo M.M.H. Titirsha T. Amin N. Islam S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare Energies 2022 15 7495 10.3390/en15207495
  7. Friebe M. Innovation design for the future of health Novel Innovation Design for the Future of Health: Entrepreneurial Concepts for Patient Empowerment and Health Democratization Springer Cham, Switzerland 2022 Chapter 1 1 13 978-3-031-08190-3
  8. Song Y. Min J. Yu Y. Wang H. Yang Y. Zhang H. Gao W. Wireless Battery-Free Wearable Sweat Sensor Powered by Human Motion Sci. Adv. 2020 6 eaay9842 10.1126/sciadv.aay9842
  9. Li C. Jiang F. Liu C. Liu P. Xu J. Present and Future Thermoelectric Materials Toward Wearable Energy Harvesting Appl. Mater. Today 2019 15 543 557 10.1016/j.apmt.2019.04.007
  10. Todaro M.T. Guido F. Algieri L. Mastronardi V.M. Desmaële D. Epifani G. De Vittorio M. Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films IEEE Trans. Nanotechnol. 2018 17 220 230 10.1109/TNANO.2017.2789300
  11. Khalifa S. Lan G. Hassan M. Seneviratne A. Das S.K. HARKE: Human Activity Recognition from Kinetic Energy Harvesting Data in Wearable Devices IEEE Trans. Mob. Comput. 2018 17 1353 1368 10.1109/TMC.2017.2761744
  12. Seneviratne S. Hu Y. Nguyen T. Lan G. Khalifa S. Thilakarathna K. A Survey of Wearable Devices and Challenges IEEE Commun. Surv. Tutor. 2017 19 2573 2620 10.1109/COMST.2017.2731979
  13. Mukhopadhyay S.C. Wearable Sensors for Human Activity Monitoring: A Review IEEE Sens. J. 2014 15 1321 1330 10.1109/JSEN.2014.2370945
  14. Wang Z.-q. Huang Z.-h. Wearable health status monitoring device for electricity workers using ZigBee-based wireless sensor network Proceedings of the 2014 7th International Conference on Biomedical Engineering and Informatics Dalian, China 14–16 October 2014 602 606 10.1109/BMEI.2014.7002845
  15. Maciuca A. Popescu D. Strutu M. Stamatescu G. Wireless sensor network based on multilevel femtocells for home monitoring Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS) Berlin, Germany 12–14 September 2013 499 503 10.1109/IDAACS.2013.6662735
  16. Wearable Technology Market September 2024 Available online: https://www.precedenceresearch.com/wearable-technology-market (accessed on 8 March 2025)
  17. Hannan M.A. Mutashar S. Samad S.A. Hussain A. Energy harvesting for the implantable biomedical devices: Issues and challenges Biomed. Eng. Online 2014 13 79 10.1186/1475-925X-13-79 24950601
  18. Bandodkar A.J. Wang J. Wearable Biofuel Cells: A Review Electroanalysis 2016 28 1188 1200 10.1002/elan.201600019
  19. Yu Y. Nassar J. Xu C. Min J. Yang Y. Dai A. Doshi R. Huang A. Song Y. Gehlhar R. et al. Biofuel-Powered Soft Electronic Skin with Multiplexed and Wireless Sensing for Human-Machine Interfaces Sci. Robot. 2020 5 eaaz7946 10.1126/scirobotics.aaz7946
  20. Gao W. Emaminejad S. Nyein H.Y.Y. Challa S. Chen K. Peck A. Fahad H.M. Ota H. Shiraki H. Kiriya D. et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis Nature 2016 529 509 514 10.1038/nature16521
  21. Wu F. Li C. Yin Y. Cao R. Li H. Zhang X. Zhao S. Wang J. Wang B. Xing Y. et al. A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing Adv. Mater. Technol. 2019 4 1800216 10.1002/admt.201800216
  22. Zou Y. Raveendran V. Chen J. Wearable Triboelectric Nanogenerators for Biomechanical Energy Harvesting Nano Energy 2020 77 105303 10.1016/j.nanoen.2020.105303
  23. Yin L. Kim K.N. Trifonov A. Podhajny T. Wang J. Designing Wearable Microgrids: Towards Autonomous Sustainable on-Body Energy Management Energy Environ. Sci. 2022 15 82 101 10.1039/D1EE03113A
  24. Choi Y.-M. Lee M.G. Jeon Y. Wearable Biomechanical Energy Harvesting Technologies Energies 2017 10 1483 10.3390/en10101483
  25. Mendez-Lira O. Spinelli E.M. Gonzalez-Landaeta R. Battery-Less Power Management Circuit Powered by a Wearable Piezoelectric Energy Harvester Energy Technol. 2021 9 2100520 10.1002/ente.202100520
  26. Haider S.T. Shah M.A. Lee D.-G. Hur S. A Review of the Recent Applications of Aluminum Nitride-Based Piezoelectric Devices IEEE Access 2023 11 58779 58795 10.1109/ACCESS.2023.3276716
  27. Liu H. Fu H. Sun L. Lee C. Yeatman E.M. Hybrid Energy Harvesting Technology: From Materials, Structural Design, System Integration to Applications Renew. Sustain. Energy Rev. 2021 137 110473 10.1016/j.rser.2020.110473
  28. Jinno H. Fukuda K. Xu X. Park S. Suzuki Y. Koizumi M. Yokota T. Osaka I. Takimiya K. Someya T. Stretchable and Waterproof Elastomer-Coated Organic Photovoltaics for Washable Electronic Textile Applications Nat. Energy 2017 2 780 785 10.1038/s41560-017-0001-3
  29. Almarri N. Chang J. Song W. Jiang D. Demosthenous A. Piezoelectric energy harvesting and ultra-low-power management circuits for medical devices Nano Energy 2024 13 110196 10.1016/j.nanoen.2024.110196
  30. Horie K. Al Farisi M.S. Hasegawa Y. Matsushima M. Kawabe T. Shikida M. Proof-of-Concept Quantitative Monitoring of Respiration Using Low-Energy Wearable Piezoelectric Thread Electronics 2024 13 4577 10.3390/electronics13234577
  31. Tarhan E. Hoseyni S.M. Aghakhani A. Basdogan I. Investigation of networked SSHI configurations for plate-based piezoelectric energy harvesters J. Intell. Mater. Syst. Struct. 2025 36 327 339 10.1177/1045389X241306534
  32. Ali A. Iqbal S. Chen X. Recent advances in piezoelectric wearable energy harvesting based on human motion: Materials, design, and applications Energy Strategy Rev. 2024 53 101422 10.1016/j.esr.2024.101422
  33. Verma P. Naval S. Mallick D. Jain A. Hybrid Piezoelectric-Triboelectric Biomechanical Harvesting System for Wearable Applications IEEE Trans. Circuits Syst. II Express Briefs 2024 71 1914 1918 10.1109/TCSII.2023.3342075
  34. Ali A. Shaukat H. Bibi S. Altabey W.A. Noori M. Kouritem S.A. Recent Progress in Energy Harvesting Systems for Wearable Technology Energy Strat. Rev. 2023 49 101124 10.1016/j.esr.2023.101124
  35. Ren W. Sun Y. Zhao D. Aili A. Zhang S. Shi C. Zhang J. Geng H. Zhang J. Zhang L. et al. High-Performance Wearable Thermoelectric Generator with Self-Healing, Recycling, and Lego-like Reconfiguring Capabilities Sci. Adv. 2021 7 eabe0586 10.1126/sciadv.abe0586
  36. Yuan J. Zhu R. A Fully Self-Powered Wearable Monitoring System with Systematically Optimized Flexible Thermoelectric Generator Appl. Energy 2020 271 115250 10.1016/j.apenergy.2020.115250
  37. Chodankar N. Padwal C. Pham H.D. Ostrikov K.K. Jadhav S. Mahale K. Yarlagadda P.K. Huh Y.S. Han Y.K. Dubal D. Piezo-supercapacitors: A new paradigm of self-powered wellbeing and biomedical devices Nano Energy 2021 90 Pt A 106607 10.1016/j.nanoen.2021.106607
  38. Sayed D.M. Allam N.K. All-solid-state, self-powered supercapacitors: State-of-the-art and future perspectives J. Energy Storage 2022 56 Pt A 105882 10.1016/j.est.2022.105882
  39. Park Y. Cho K. Kim S. Vertical all-in-one energy systems constructed with thermoelectric generators and microsupercapacitors J. Power Sources 2021 510 230402 10.1016/j.jpowsour.2021.230402
  40. Aktakka E.E. Najafi K. A Micro Inertial Energy Harvesting Platform with Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes IEEE J. Solid-State Circuits 2014 49 2017 2029 10.1109/JSSC.2014.2331953
  41. Sanchez D.A. Leicht J. Jodka E. Fazel E. Manoli Y. 21.2 A 4µW-to-1mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA 31 January–4 February 2016 10.1109/ISSCC.2016.7418059
  42. Dell’Anna F. Dong T. Li P. Wen Y. Yang Z. Casu M.R. Azadmehr M. Berg Y. State-of-the-Art Power Management Circuits for Piezoelectric Energy Harvesters IEEE Circuits Syst. Mag. 2018 18 27 48 10.1109/MCAS.2018.2849262
  43. Chamanian S. Muhtaroğlu A. Külah H. A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters IEEE Trans. Power Electron. 2020 35 901 912 10.1109/TPEL.2019.2910410
  44. Chamanian S. Çiftci B. Muhtaroğlu A. Külah H. A Self-Powered and Area Efficient SSHI Rectifier for Piezoelectric Harvesters IEEE Access 2021 9 117703 117713 10.1109/ACCESS.2021.3107365
  45. Ben Ammar M. Sahnoun S. Fakhfakh A. Viehweger C. Kanoun O. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting Sensors 2023 23 1830 10.3390/s23041830
  46. Costanzo L. Lo Schiavo A. Vitelli M. A Self-Supplied Power Optimizer for Piezoelectric Energy Harvesters Operating under Non-Sinusoidal Vibrations Energies 2023 16 4368 10.3390/en16114368
  47. Ghandi S. Janaideh M.A. Zhang L. State of the Art on Power Conditioning for Piezoelectric Energy Harvesters IEEE Trans. Power Electron. 2024 39 3724 3737 10.1109/TPEL.2023.3345663
  48. LTC3588-1 Nanopower Energy Harvesting Power Supply—Datasheet. Analog Devices, Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/ltc3588-1.html (accessed on 14 September 2024)
  49. ADP5092 Ultralow Power Energy Harvester PMU with MPPT and Charge Management—Datasheet. Analog Devices, Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/adp5092.html (accessed on 14 September 2024)
  50. MAX20361 Small, Single-/Multi-Cell Solar Harvester with MPPT and Harvest Counter—Datasheet. Analog Devices, Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/max20361.html (accessed on 14 September 2024)
  51. TPSM365R6RDNR 3-V to 65-V Input, 1-V to 13-V Output, 0.6-A Synchronous Buck Converter Power Module—Datasheet Texas Instruments Dallas, TX, USA 2023 Available online: https://www.ti.com/product/TPSM365R6/part-details/TPSM365R6RDNR (accessed on 14 September 2024)
  52. Li W. Lin K. Chen L. Yang D. Ge Q. Wang Z. Self-Powered Wireless Flexible Ionogel Wearable Devices ACS Appl. Mater. Interfaces 2023 15 14768 14776 10.1021/acsami.2c19744 36881511
  53. Hao D. Gong Y. Wu J. Shen Q. Zhang Z. Zhi J. Zou R. Kong W. Kong L. A Self-Sensing and Self-Powered Wearable System Based on Multi-Source Human Motion Energy Harvesting Small 2024 20 2311036 10.1002/smll.202311036
  54. Mahapatra A. Ajimsha R.S. Deepak D. Misra P. Tuning ZnO-based piezoelectric nanogenerator efficiency through n-ZnO/p-NiO bulk interfacing Nature 2024 14 11871 10.1038/s41598-024-62789-3
  55. Lv P. Zhan H. Xin L. Zhang S. Wang J. Li R. Li C. Ren L. Zhang M. Cheng X. Flexible, bilayered piezoelectric composite based on large-scale inorganic PZT film and organic P(VDF-TrFE) membrane for mechanical energy harvesting Surf. Interfaces 2024 51 104623 10.1016/j.surfin.2024.104623
  56. Ali T.A. Pilz J. Schäffner P. Kratzer M. Teichert C. Stadlober B. Coclite A.M. Piezoelectric Properties of Zinc Oxide Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition Phys. Status Solidi A 2020 217 2000319 10.1002/pssa.202000319
  57. Putra P.P. Akasaka S. Konosu Y. Zhang S. Tanioka A. Matsumoto H. Structure–Piezoelectric Property Relationships of Thin Films Composed of Electrospun Aligned Poly(vinylidene fluoride) Nanofibers Nanomaterials 2024 14 491 10.3390/nano14060491
  58. Ali I. Dulal M. Karim N. Afroj S. 2D Material-Based Wearable Energy Harvesting Textiles: A Review Small Struct. 2024 5 2300282 10.1002/sstr.202300282
  59. Li P. Zhang Z. Self-Powered 2D Material-Based pH Sensor and Photodetector Driven by Monolayer MoSe2Piezoelectric Nanogenerator ACS Appl. Mater. Interfaces 2020 12 58132 58139 10.1021/acsami.0c18028
  60. Zhiqiang S. Rongxi H. Feng J. Recent progress in piezoelectric thin films as self-powered devices: Material and application Front. Mater. 2024 11 1373040 10.3389/fmats.2024.1373040
  61. Bairagi S. Kumar C. Babu A. Aliyana A.K. Stylios G. Pillai S.C. Mulvihill D.M. Wearable nanocomposite textile-based piezoelectric and triboelectric nanogenerators: Progress and perspectives Nano Energy 2023 118 Pt B 108962 10.1016/j.nanoen.2023.108962
  62. Maestri G. Ferreira L.B. Bachmann P. Paim A.A. Merlini C. Steffens F. Recent advances in piezoelectric textile materials: A brief literature review J. Eng. Fibers Fabr. 2023 18 15589250231151242 10.1177/15589250231151242
  63. Ju B.J. Oh J.H. Yun C. Park C.H. Development of a superhydrophobic electrospun poly (vinylidene fluoride) web via plasma etching and water immersion for energy harvesting applications RSC Adv. 2018 8 28825 28835 10.1039/C8RA04652B 35548396
  64. Mokhtari F. Spinks G.M. Sayyar S. Cheng Z. Ruhparwar A. Foroughi J. Highly Stretchable Self-Powered Wearable Electrical Energy Generator and Sensors Adv. Mater. Technol. 2021 6 2000841 10.1002/admt.202000841
  65. Zhen L. Lu L. Yao Y. Liua J. Yang B. Flexible inorganic piezoelectric functional films and their applications J. Adv. Ceram. 2023 12 433 462 10.26599/JAC.2023.9220691
  66. Yeo H.G. Xue T. Roundy S. Ma X. Rahn C. Trolier-McKinstry C. Strongly (001) Oriented Bimorph PZT Film on Metal Foils Grown by rf-Sputtering for Wrist-Worn Piezoelectric Energy Harvesters Adv. Funct. Mater. 2018 28 1801327 10.1002/adfm.201801327
  67. Chen C. Feng J. Li J. Guo Y. Shi X. Peng H. Functional Fiber Materials to Smart Fiber Devices Chem. Rev. 2023 123 613 662 10.1021/acs.chemrev.2c00192
  68. Liu Y. Li H. Feng Q. Su H. Li D. Shang Y. Chen H. Li B. Dong H. A Three-Dimensional-Printed Recyclable, Flexible, and Wearable Device for Visualized UV, Temperature, and Sweat pH Sensing ACS Omega 2022 7 9834 9845 10.1021/acsomega.2c00128
  69. Güçlü H. Kasım H. Yazici M. Investigation of the optimum vibration energy harvesting performance of electrospun PVDF/BaTiO3 nanogenerator J. Compos. Mater. 2023 57 409 424 10.1177/00219983221144696
  70. Bairagi S. Ali S.W. Influence of High Aspect Ratio Lead-Free Piezoelectric Fillers in Designing Flexible Fibrous Nanogenerators: Demonstration of Significant High Output Voltage Energy Technol. 2019 7 1900538 10.1002/ente.201900538
  71. Sheng T. He Q. Cao Y. Dong Z. Gai Y. Zhang W. Zhang D. Chen H. Jiang Y. Research on energy harvesting using piezoelectric materials ACS Appl. Mater. Interfaces 2023 15 39570 39577 10.1021/acsami.3c08221
  72. Wang S. Khan A.A. Teale S. Xu J. Parmar D.H. Zhao R. Grater L. Serles P. Zou Y. Filleter T. et al. Large piezoelectric response in a Jahn-Teller distorted molecular metal halide Nat. Commun. 2023 14 1852 10.1038/s41467-023-37471-3 37012239
  73. Yea J. Ha J. Lim K.S. Lee H. Oh S. Jekal J. Yu T.S. Jung H.H. Park J.U. Lee T. et al. Research on novel nanostructures for enhanced performance ACS Nano 2024 18 34096 34106 10.1021/acsnano.4c09933
  74. Kim S. Towfeeq I. Dong Y. Gorman S. Rao A.M. Koley G. P(VDF-TrFE) Film on PDMS Substrate for Energy Harvesting Applications Appl. Sci. 2018 8 213 10.3390/app8020213
  75. Subasinghage K. Gunawardane K. Supercapacitor-Assisted Energy Harvesting Systems Energies 2024 17 3853 10.3390/en17153853
  76. Jalal N.I. Ibrahim R.I. Oudah M.K. A review on Supercapacitors: Types and components J. Phys. Conf. Ser. 2021 1973 012015 10.1088/1742-6596/1973/1/012015
  77. Krishnamoorthy K. Pazhamalai P. Manoharan S. Ali N. Kim S.-J. Recent trends, challenges, and perspectives in piezoelectric-driven self-chargeable electrochemical supercapacitors Carbon Energy 2022 4 833 855 10.1002/cey2.202
  78. Kasprzak D. Mayorga-Martinez C.C. Alduhaish O. Pumera M. Wearable and Flexible All-Solid-State Supercapacitor Based on MXene and Chitin Energy Technol. 2023 11 2201103 10.1002/ente.202201103
  79. Shimada T. Takenaka N. Ando Y. Otani M. Okubo M. Yamada A. Relationship between Electric Double-Layer Structure of MXene Electrode and Its Surface Functional Groups Chem. Mater. 2022 34 2069 2075 10.1021/acs.chemmater.1c03328
  80. Zhang Y. Cao J. Yuan Z. Zhao L. Wang L. Han W. Assembling Co3O4Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors J. Colloid Interface Sci. 2021 599 109 118 10.1016/j.jcis.2021.04.089
  81. Ahmad F. Zahid M. Jamil H. Khan M.A. Atiq S. Bibi M. Shahbaz K. Adnan M. Danish M. Rasheed F. et al. Advances in graphene-based electrode materials for high-performance supercapacitors: A review J. Energy Storage 2023 72 108731 10.1016/j.est.2023.108731
  82. NK P.S. Jeong S.M. Rout C.S. MXene–carbon based hybrid materials for supercapacitor applications Energy Adv. 2024 3 341 365 10.1039/d3ya00502j
  83. Singh P. Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors Conducting Polymer Hybrids Kumar V. Kalia S. Swart H. Springer Series on Polymer and Composite Materials Springer Cham, Switzerland 2017 1 23 10.1007/978-3-319-46458-9_10
  84. Lu Y. Jiang Y. Lou Z. Shi R. Chen D. Shen G. Wearable supercapacitor self-charged by P(VDF-TrFE) piezoelectric separator Prog. Nat. Sci. Mater. Int. 2020 30 174 179 10.1016/j.pnsc.2020.01.023
  85. Arenas L.F. Ponce de León C. Walsh F.C. Three-dimensional porous metal electrodes: Fabrication, characterisation and use Curr. Opin. Electrochem. 2019 16 1 9 10.1016/j.coelec.2019.02.002
  86. Areir M. Xu Y. Harrison D. Fyson J. 3D printing of highly flexible supercapacitor designed for wearable energy storage Mater. Sci. Eng. B 2017 226 29 38 10.1016/j.mseb.2017.09.004
  87. Aleksandrova M. Pandiev I. Printed Piezoelectric Harvester for Integration in a Wearable Energy Storage Device Proceedings of the 2024 47th International Spring Seminar on Electronics Technology (ISSE) Prague, Czech Republic 15–19 May 2024 1 4 10.1109/ISSE61612.2024.10604189
  88. Aleksandrova M. Pandiev I. Synergistic integration of energy harvesters and supercapacitors for enhanced performance Helyion 2025 11 e42808 10.1016/j.heliyon.2025.e42808
  89. Zhao X. Cao H. Coleman B.J. Tan Z. Echols I.J. Pentzer E.B. Lutkenhaus J.L. Radovic M. Green M.J. Role of Antioxidant Structure in Mitigating Oxidation in Ti3C2Tx and Ti2CTx MXenes Adv. Mater. Interf. 2022 9 2200480 10.1002/admi.202200480
  90. Swain N. Balasubramaniam S. Ramadoss A. High energy density supercapattery empowered by efficient binder-free three-dimensional carbon coated NiCo2O4/Ni battery and Fe3S4@NiCo pseudocapacitive electrodes J. Energy Storage 2023 58 106220 10.1016/j.est.2022.106220
  91. Wang W. Cao J. Yu J. Tian F. Luo X. Hao Y. Huang J. Wang F. Zhou W. Xu J. et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes Polymers 2023 15 1856 10.3390/polym15081856 37112003
  92. Balboni R. Maron G. Masteghin M. Tas M. Rodrigues L. Gehrke V. Alano J. Andreazza R. Carreño N. Silva S. An easy to assemble PDMS/CNTs/PANI flexible supercapacitor with high energy-to-power density Nanoscale 2022 14 2266 2276 10.1039/D1NR06914D
  93. Railanmaa A. Soltani A. Lehtimäki S. Pournoori N. Keskinen J. Hokka M. Lupo D. Skin-conformable printed supercapacitors and their performance in wear Sci. Rep. 2020 10 15194 10.1038/s41598-020-72244-8 32939011
  94. Thomas S.A. Cherusseri J. Rajendran D.N. A Minireview on Polyurethane-Based Flexible Electrodes for Wearable Supercapacitors: Strategies Synth. Electrochem. Perform. Eval. Energy Fuels 2025 39 2 18 10.1021/acs.energyfuels.4c03291
  95. Wen Y. Chen H. Wu M. Li C. Vertically oriented MXene bridging the frequency response and capacity density gap for AC-filtering pseudocapacitors Adv. Funct. Mater. 2022 32 2111613 10.1002/adfm.202111613
  96. Pathak M. Bhatt D. Bhatt R.C. Bohra B.S. Tatrari G. Rana S. Arya M.C. Sahoo N.G. High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication Chem. Rec. 2024 24 e202300236 10.1002/tcr.202300236
  97. Dar M.A. Majid S.R. Satgunam M. Batoo K.M. Kalpana S. Arularasan P. Sheik Fareed S. Moholkar A.V. Shembade U.V. Electrochemical performance of Fe-doped SnSe material electrodes for supercapacitors J. Energy Storage 2024 94 112403 10.1016/j.est.2024.112403
  98. Yao L. Liu J. Eedugurala N. Mahalingavelar P. Adams D.J. Wang K.S. Mayer K.S. Azoulay J.D. Ng T.N. Ultrafast high-energy micro-supercapacitors based on open-shell polymer-graphene composites Cell Rep. Phys. Sci. 2022 3 100792 10.1016/j.xcrp.2022.100792
  99. Gautham Prasad G. Shetty N. Thakur S. Rakshitha Bommegowda K.B. Supercapacitor technology and its applications: A review IOP Conf. Ser. Mater. Sci. Eng. 2019 561 012105 10.1088/1757-899X/561/1/012105
  100. Sezer N. Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting Nano Energy 2021 80 105567 10.1016/j.nanoen.2020.105567
  101. Ottman G.K. Hofmann H.F. Bhatt A.C. Lesieutre G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply IEEE Trans. Power Electron. 2002 17 669 676 10.1109/TPEL.2002.802194
  102. Tabesh A. Frechette L.G. A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy from a Piezoelectric Micropower Generator IEEE Trans. Ind. Electron. 2010 57 840 849 10.1109/TIE.2009.2037648
  103. Tietze V. Schenk C. Power Supplies Electronic Circuits 2nd ed. Springer New York, NY, USA 2008 Chapter 16 885 928 978-3-540-00429-5
  104. Ben-Yaakov S. Krihely N. Resonant rectifier for piezoelectric sources Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition Austin, TX, USA 6–10 March 2005 Volume 1 249 253 10.1109/APEC.2005.1452928
  105. Song H.J. Choi Y.-T. Wereley N.M. Purekar A.S. Energy Harvesting Devices Using Macro-Fiber Composite Materials J. Intell. Mater. Syst. Struct. 2010 21 647 658 10.1177/1045389X10361633
  106. Elfrink R. Renaud M. Kamel T.M. de Nooijer C. Jambunathan M. Goedbloed M. Hohlfeld D. Matova S. Pop V. Caballero L. et al. Vacuum-packaged piezoelectric vibration energy harvesters: Damping contributions and autonomy for a wireless sensor system J. Micromech. Microeng. 2010 20 104001 10.1088/0960-1317/20/10/104001
  107. Liu W. Wang Z. Qu S. Luo R. Vibration energy harvesting and management for wireless sensor networks in bridge structural monitoring Proceedings of the 2015 IEEE SENSORS Busan, Republic of Korea 1–4 November 2015 10.1109/ICSENS.2015.7370561
  108. Du S. Jia Y. Zhao C. Amaratunga G.A.J. Seshia A.A. A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting IEEE J. Solid-State Circuits 2019 54 1733 1743 10.1109/JSSC.2019.2893525
  109. Pandiev I. Aleksandrova M. Kolev G. Design and Implementation of Interface Circuits Intended for Printed Piezoelectric Micropower Harvesters on Flexible Substrates IOP Conf. Ser. Mater. Sci. Eng. 2020 876 012007 10.1088/1757-899X/876/1/012007
  110. Çiftci B. Chamanian S. Koyuncuoğlu A. Muhtaroğlu A. Külah H. A Low-Profile Autonomous Interface Circuit for Piezoelectric Micro-Power Generators IEEE Trans. Circuits Syst. I Regul. Pap. 2021 68 1458 1471 10.1109/TCSI.2021.3053503
  111. Stefanov N. Special rectifiers, and Power rectifiers Power Supply Devices Tehnika Sofia, Bulgaria 2002 Chapter 2 and Chapter 4 43 96 43–68, 84–96 954-03-0564-0
  112. Seifart M. Stromversorgung Analoge Schaltungen 6th ed. Verlag Technik Berlin, Germany 2003 Chapter 22 591 639 3-341-01298-2
  113. Pandiev I. Tomchev N. Kurtev N. Aleksandrova M. Analysis of the Methods for Realization of Low-Power Piezoelectric Energy Harvesting Circuits for Wearable Battery-Free Power Supply Devices Appl. Sci. 2024 14 4792 10.3390/app14114792
  114. Sedra A. Smith K. Carusone T. Gaudet V. MOS Field-Effect Transistors (MOSFETs) Microelectronic Circuits 8th ed. Oxford University Press Oxford, NY, USA 2020 Chapter 5 246 303
  115. Dallago E. Miatton D. Venchi G. Frattini G. Ricotti G. Self-Supplied Integrable Active High-Efficiency AC-DC Converter for Piezoelectric Energy Scavenging Systems Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS) New Orleans, LA, USA 27–30 May 2007 1633 1636 10.1109/ISCAS.2007.378832
  116. Dallago E. Miatton D. Venchi G. Bottarel V. Frattini G. Ricotti G. Schipani M. Active self-supplied AC-DC converter for piezoelectric energy scavenging systems with supply independent bias Proceedings of the 2008 IEEE International Symposium on Circuits and Systems (ISCAS) Seattle, WA, USA 18–21 May 2008 1448 1451 10.1109/ISCAS.2008.4541701
  117. Dong Z. Allen P.E. Low-voltage, supply independent CMOS bias circuit Proceedings of the 2002 45th Midwest Symposium on Circuits and Systems, MWSCAS-2002 Tulsa, OK, USA 4–7 August 2002; p. III 10.1109/MWSCAS.2002.1187100
  118. Hehn T. Hagedorn F. Maurath D. Marinkovic D. Kuehne I. Frey A. A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters IEEE J. Solid-State Circuits 2012 47 2185 2198 10.1109/JSSC.2012.2200530
  119. Ghovanloo M. Najafi K. Fully integrated wideband high-current rectifiers for inductively powered devices IEEE J. Solid-State Circuits 2004 39 1976 1984 10.1109/JSSC.2004.835822
  120. Godinho A. Yang Z. Dong T. Gonçalves L. Mendes P. Wen Y. Li P. Jiang Z. A Dynamic Threshold Cancellation Technique for a High-Power Conversion Efficiency CMOS Rectifier Sensors 2021 21 6883 10.3390/s21206883
  121. Frick V. Wassouf L. Jamshidpour E. Voltage Flip Efficiency Enhancement for Piezo Energy Harvesting Electronics 2021 10 2400 10.3390/electronics10192400
  122. Edla M. Lim Y.Y. Padilla R.V. Deguchi M. An Improved Rectifier Circuit for Piezoelectric Energy Harvesting from Human Motion Appl. Sci. 2021 11 2008 10.3390/app11052008
  123. Yuen P.W. Chong G. Ramiah H. A high efficient dual-output rectifier for piezoelectric energy harvesting Int. J. Electron. Commun. (AEÜ) 2019 111 152922 10.1016/j.aeue.2019.152922
  124. Yang H. Huang M. Ren M. Li X. Piezoelectric energy harvesting interface circuit for small area and low power consumption—A review Measurement 2024 242 116051 10.1016/j.measurement.2024.116051
  125. Richard C. Guyomar D. Audigier D. Ching G. Semi Passive Damping using Continuous Switching of a Piezoelectric Device Proceedings of the SPIE Smart Structures and Materials 1999: Passive Damping and Isolation Newport Beach, CA, USA 1–2 March 1999 SPIE San Diego, CA, USA 1999
  126. Guyomar D. Richard C. Lefeuvre E. Petit L. Piezoelectric Non-linear Systems for Standalone Vibration Control and Energy Reclamation AC’04 Hildesheim, Germany 2004
  127. Badel A. Guyomar D. Lefeuvre E. Richard C. Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion J. Intell. Mater. Syst. Struct. 2005 16 889 901 10.1177/1045389X05053150
  128. Dicken J. Mitcheson P.D. Stoianov I. Yeatman E.M. Increased power output from piezoelectric energy harvesters by pre-biasing Proceedings of the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) Washington, DC, USA 1–4 December 2009 75 78
  129. Fang S. Xia H. Xia Y. Ye Y. Shi G. Wang X. Chen Z. An efficient piezoelectric energy harvesting circuit with series-SSHI rectifier and FNOV-MPPT control technique IEEE Trans. Ind. Electron. 2021 68 7146 7155 10.1109/TIE.2020.3007054
  130. Chew Z.J. Zhu M. Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting IEEE Trans. Ind. Electron. 2020 67 3267 3276 10.1109/TIE.2019.2908610
  131. Badel A. Benayad A. Lefeuvre E. Lebrun L. Richard C. Guyomar D. Single crystals and nonlinear process for outstanding vibration-powered electrical generators IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006 53 673 684 10.1109/TUFFC.2006.1621494
  132. Younas O. Li P. Wen Y. A compact self-powered inductor-less piezoelectric energy harvesting circuit using gyrator Smart Mater. Struct. 2024 33 065013 10.1088/1361-665X/ad46a1
  133. Song H.C. Kim S.W. Kim H.S. Lee D.G. Kang C.Y. Nahm S. Piezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuning Adv. Mater. 2020 32 2002208 10.1002/adma.202002208 33006178
  134. Kim H.S. Kim J.H. Kim J. A review of piezoelectric energy harvesting based on vibration Int. J. Precis. Eng. Manuf. 2011 12 1129 1141 10.1007/s12541-011-0151-3
  135. Liu Y. Tian G. Wang Y. Lin J. Zhang Q. Hofmann H.F. Active piezoelectric energy harvesting: General principle and experimental demonstration J. Intell. Mater. Syst. Struct. 2009 20 575 585 10.1177/1045389X08098195
  136. Koniavitis K. Alimisis V. Uzunoglu N. Sotiriadis P.P. An Analog Integrated Multiloop LDO: From Analysis to Design Electronics 2024 13 3602 10.3390/electronics13183602
  137. Sun M. Wang L. Huang T. Xu M. A Fast Transient Response Capacitor-Less LDO with Transient Enhancement Technology Micromachines 2024 15 299 10.3390/mi15030299 38542546
  138. Pérez-Bailón J. Calvo B. Medrano N. A Fully-Integrated 180 nm CMOS 1.2 V Low-Dropout Regulator for Low-Power Portable Applications Electronics 2021 10 2108 10.3390/electronics10172108
  139. Khan D. Basim M. Ain Q.u. Shah S.A.A. Shehzad K. Verma D. Lee K.-Y. Design of a Power Regulated Circuit with Multiple LDOs for SoC Applications Electronics 2022 11 2774 10.3390/electronics11172774
  140. Gao M. Cai X. Gao Y. Xia R. Li B. Fully Integrated 1.8 V Output 300 mA Load LDO with Fast Transient Response Electronics 2023 12 1409 10.3390/electronics12061409
  141. Serrano-Reyes A. Sanz-Pascual M.T. Calvo-López B. Three-Stage CMOS LDO with Optimized Power and Dynamic Performance for Portable Devices Electronics 2023 12 4638 10.3390/electronics12224638
  142. Seo U.-Y. Kwon S.-W. Kim D.-H. Oh J.-Y. Kim M.-S. Koo Y.-S. Design of High-Reliability Low- Dropout Regulator Combined with Silicon Controlled Rectifier-Based Electrostatic Discharge Protection Circuit Using Dynamic Dual Buffer Electronics 2024 13 3016 10.3390/electronics13153016
  143. Christos K. Thomas U. A Nano-Power 0.5 V Event-Driven Digital-LDO with Fast Start-Up Burst Oscillator for SoC-IoT J. Low Power Electron. Appl. 2020 10 41 10.3390/jlpea10040041
  144. Texas Instruments TPS7A16A-Q1 Ultra-Low Power, High Voltage LDO Regulator Datasheet, February 2019 Available online: https://www.ti.com (accessed on 8 March 2025)
  145. Torex Semiconductor XC620 Series LDO Voltage Regulator Datasheet Available online: https://www.torexsemi.com (accessed on 8 March 2025)
  146. STMicroelectronics STLQ015 Ultra-Low Power Linear Regulator Datasheet Available online: https://www.st.com (accessed on 8 March 2025)
  147. Analog Devices MAX15007 Low Quiescent Current LDO Regulator Datasheet Available online: https://www.analog.com (accessed on 8 March 2025)
  148. Microchip Technology MIC5365 Ultra-Low Quiescent Current Regulator Datasheet Available online: https://www.microchip.com (accessed on 8 March 2025)
  149. Texas Instruments LP5907 Ultra-Low Noise LDO Regulator Datasheet Available online: https://www.ti.com (accessed on 8 March 2025)

Issue

Electronics (Switzerland), vol. 14, 2025, Albania, https://doi.org/10.3390/electronics14061083

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science