Autors: Dichev D., Zhelezarov I., Georgiev B., Hasanov H., Libchev K., Kupriyanov O., Malakov, I. K., Dicheva R.
Title: Improving the Accuracy of Systems for Measuring the Angular Position of Moving Objects with an Adaptive Wiener Filter
Keywords: adaptive Wiener filter, Attitude and Heading Reference Systems (AHRS), dynamic error, MEMS sensor, systems for measuring the angular position of moving objects

Abstract: This paper presents a method for increasing the accuracy of systems for measuring the angular position of moving objects by using an adaptive Wiener filter. In the context of modern technological progress, the accuracy of angular position measurements is important for numerous applications, including aviation, marine, aerospace, robotics, and medical engineering. The method is based on detailed modeling of the dynamic errors arising due to external and internal disturbances and uses the adaptive Wiener filter to correct them. The modeling results demonstrate that the proposed technique significantly reduces the noise and improves the accuracy of the measurements. The method is applicable in various industrial and scientific fields, where high accuracy of angular measurements is required, and offers a significant contribution to the development of measurement technologies and control systems of dynamic objects.

References

  1. Pollny, O., Held, A., Kargl, F., "Survey of Air, Sea, and Road Vehicles Research for Motion Control Security", IEEE Transactions on Intelligent Transportation Systems, volume 24, issue 7, 2023, pp. 6748-6763. DOI: 10.1109/TITS.2023.3264453
  2. Yadav, R., Chugh, H., Jain, V., Baneriee, P., "Indoor navigation system using visual positioning system with augmented reality", In 2018 International Conference on Automation and Computational Engineering (ICACE), 2018, October, pp. 52-56. DOI: 10.1109/ICACE.2018.8687111
  3. Weon, I. S., Lee, S. G., Ryu, J. K., "Object Recognition based interpolation with 3d lidar and vision for autonomous driving of an intelligent vehicle", IEEE Access, volume 8, 2020, pp. 65599-65608. DOI: 10.1109/ACCESS.2020.2982681
  4. Borovytsky, V., Averin, D., "Optical sensor for drone coordinate measurements", In Optics and Photonics for Advanced Dimensional Metrology, volume 11352, 2020, April, pp. 324-329. DOI: 10.1117/12.2555392
  5. Komarski, D., Diakov, D., Nikolov, R., "Analysis of the Transfer Curve and the Center of Rotation of Elastic Micro-Positioning Module with Optimized Butterfly Flexures", In 32nd International Scientific Symposium Metrology and Metrology Assurance, MMA, 2022. DOI: 10.1109/MMA55579.2022.9993338
  6. Diakov, D., Komarski, D., Nikolova, H., "Optimization of Butterfly Flexures for Angular Positioning", In 31st International Scientific Symposium Metrology and Metrology Assurance, MMA, 2021. DOI: 10.1109/MMA52675.2021.9610833
  7. Diakov, D., Komarski, D., "Micro-positioning Module for Angular Orientation Position of the Axis of Rotation Analysis", In 31st International Scientific Symposium Metrology and Metrology Assurance, MMA, 2021, DOI: 10.1109/MMA52675.2021.9610873
  8. Komarski D., Diakov D., Nikolova H., Vassilev V., "Analysis of the Impact of the Central Connecting Element Stiffness on the Accuracy Characteristics of Micro-Positioning Elastic Module with 'Butterfly' Flexures", In 33rd International Scientific Symposium Metrology and Metrology Assurance, MMA, 2023. DOI: 10.1109/MMA59144.2023.10317907
  9. Sotirov, B., Masheva, M., Gueorguiev, T., "Measurement system analysis of a static method for taximeter verification", Acta IMEKO, volume 12, issue 3, 2023, pp. 1-6. DOI: 10.21014/actaimeko.v12i3.1467
  10. Tsvetanov, G., Kokalarov, M., Karadzhov, T., Georgiev, I., "A new method for contactless measurement of small module gears with asymmetric profile", Annals of DAAAM and Proceedings of the International DAAAM Symposium, volume 34, issue 1, pp. 262-267. DOI: 10.2507/34th.daaam.proceedings.033
  11. Lazov, L., Teirumnieks, E., Karadzhov, T., Angelov, N., "Influence of power density and frequency of the process of laser marking of steel products", Infrared Physics & Technology, 116, 103783, 2021. DOI: 10.1016/j.infrared.2021.103783
  12. Tomczyk, K., "Uncertainties in determining the upper bound of dynamic error for the LVDT sensor", Measurement, volume 235, 2024, Article number 114950. DOI: 10.1016/j.measurement.2024.114950
  13. Kupriyanov, O., Trishch, R., Dichev, D., Bondarenko, T., "Mathematic model of the general approach to tolerance control in quality assessment", In Grabchenko's International Conference on Advanced Manufacturing Processes, 2021, September, pp. 415-423. DOI: 10.1007/978-3-030-91327-4-41
  14. Dichev, D., Koev, H., Diakov, D., Panchev, N., Miteva, R., Nikolova, H., "Automated system for calibrating instruments measuring parameters of moving objects", In 2017 International Symposium ELMAR, 2017, September, pp. 219-224. DOI: 10.23919/ELMAR.2017.8124472
  15. Dichev, D., Zhelezarov, I., Dicheva, R., Diakov, D., Nikolova, H., Cvetanov, G., "Algorithm for estimation and correction of dynamic errors", In 2020 XXX International Scientific Symposium'Metrology and Metrology Assurance (MMA), 2020, September, pp. 1-4. DOI: 10.1109/MMA49863.2020.9254261
  16. Dichev, D., Koev, H., Bakalova, T., Louda, P., "A gyro-free system for measuring the parameters of moving objects", Measurement Science Review, volume 14, issue 5, 2014, pp. 263-269.DOI: 10.2478/msr-2014-0036
  17. Volosnikov, A. S., "Adaptive linear estimation of the dynamic measurement error", Measurement Techniques, volume 66, issue 10, 2024, pp. 755-764. DOI: 10.1007/s11018-024-02289-y
  18. Hamid, K. R., Talukder, A., Islam, A. E., "Implementation of fuzzy aided Kalman filter for tracking a moving object in two-dimensional space", International Journal of Fuzzy Logic and Intelligent Systems, volume 18, issue 2, 2018, pp. 85-96. DOI: 10.5391/IJFIS.2018.18.2.85
  19. Zitar, R. A., Mohsen, A., Seghrouchni, A. E., Barbaresco, F., Al-Dmour, N. A., "Intensive review of drones detection and tracking: Linear kalman filter versus nonlinear regression, an analysis case", Archives of Computational Methods in Engineering, volume 30, issue 5, 2023, pp. 2811-2830. DOI: 10.1007/s11831-023-09894-0
  20. Lazarov, A., Kabakchiev, C., Dimitrov, A., Minchev, D., "Kalman tracking filter in 3-D space", In 2017 18th International Radar Symposium (IRS), 2017, June, DOI: 10.23919/IRS.2017.8008185
  21. Dogariu, L. M., Benesty, J., Paleologu, C., Ciochin, S., "An insightful overview of the Wiener filter for system identification", Applied Sciences, volume 11, issue 17, 2021. DOI: 10.3390/app11177774
  22. Chang, S. Y., Wu, H. C., "Tensor wiener filter", IEEE Transactions on Signal Processing, volume 70, 2022, pp. 410-422. DOI: 10.1109/TSP.2022.3140722
  23. Wu, F., Yang, W., Xiao, L., Zhu, J., "Adaptive wiener filter and natural noise to eliminate adversarial perturbation", Electronics, volume 9, issue 10, 2020. DOI: 10.3390/electronics9101634
  24. Boche, H., Pohl, V., Poor, H. V., "Recent progress in computability for prediction and Wiener filter theory", Trans. A. Razmadze Math. Inst, volume 176, issue 3, 2022, pp. 323-344.
  25. Yaan, A. C., Ozgen, M. T., "Spectral graph based vertex-frequency wiener filtering for image and graph signal denoising", IEEE Transactions on Signal and Information Processing over Networks, volume 6, 2020, pp. 226-240. DOI: 10.1109/TSIPN.2020.2976704
  26. Dogariu, L. M., Ciochin, S., Paleologu, C., Benesty, J., Oprea, C., "An iterative Wiener filter for the identification of multilinear forms", In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), 2020, July, pp. 193-197. DOI: 10.1109/TSP49548.2020.9163453

Issue

34th International Scientific Symposium Metrology and Metrology Assurance 2024, MMA 2024, 2024, , https://doi.org/10.1109/MMA62616.2024.10817671

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus