Autors: Dimitrov, S. I. Title: The Bombieri–Vinogradov Theorem for Primes of the Form p=x2+y2+1 Keywords: Bombieri–Vinogradov theorem, enveloping sieve, Linnik primesAbstract: In this paper, we establish a Bombieri–Vinogradov type result for prime numbers of the form p=x2+y2+1. The proof is based on the enveloping sieve. References - B.M. Bredikhin The dispersion method and definite binary additive problems Russ. Math. Surv. 20 2 85 125 10.1070/RM1965v020n02ABEH001170
- C. Hooley Applications of sieve methods to the theory of numbers Cambridge Cambridge University Press
- J. Li M. Zhang F. Xue An additive problem over Piatetski–Shapiro primes and almost-primes Ramanujan J. 57 1307 1333 4394008 10.1007/s11139-021-00390-2
- J. Linnik Ju An asymptotic formula in an additive problem of Hardy and Littlewood Izv. Akad. Nauk SSSR Ser. Mat. 24 629 706 122796 in Russian
- Y. Lu An additive problem on Piatetski–Shapiro primes Acta Math. Sin. (Engl. Ser.) 34 255 264 3750396 10.1007/s10114-017-7030-5
- J. Maynard Primes with restricted digits Invent. Math. 217 127 218 3958793 10.1007/s00222-019-00865-6
- H. Montgomery R. Vaughan The large sieve Mathematika 20 119 134 374060 10.1112/S0025579300004708
- R.M. Murty Problems in Analytic Number Theory Berlin Springer
- K. Nath Primes with a missing digit: Distribution in arithmetic progressions and an application in sieve theory J. Lond. Math. Soc. 109 1 4680227 10.1112/jlms.12837 e12837
- T. Peneva An additive problem with Piatetski–Shapiro primes and almost-primes Monatsh. Math. 140 119 133 2017664 10.1007/s00605-002-0005-2
- I.I. Piatetski-Shapiro On the distribution of prime numbers in sequences of the form [f(n)] Mat. Sb. 33 559 566 59302
- G. Tenenbaum Introduction to Analytic and Probabilistic Number Theory Cambridge Cambridge University Press
- X. Wang Y. Cai An additive problem involving Piatetski–Shapiro primes Int. J. Number Theory 7 1359 1378 2825977 10.1142/S1793042111004630
Issue
| Mediterranean Journal of Mathematics, vol. 22, 2025, Switzerland, https://doi.org/10.1007/s00009-024-02781-3 |
|