Autors: Dimitrov, S. I. Title: Inequalities involving arithmetic functions Keywords: 11A25, arithmetic functions, inequalitiesAbstract: This paper presents a brief survey of the most important and the most remarkable inequalities involving the basic arithmetic functions. References - H. Alzer Inequalities for the gamma and polygamma functions Abh. Math. Semin. Univ. Hamb. 1998 68 363 372 1658358 10.1007/BF02942573
- H. Alzer Sharp inequalities for the harmonic numbers Expo. Math. 2006 24 4 385 388 2313126 10.1016/j.exmath.2006.02.001
- H. Alzer Inequalities for the harmonic numbers Math. Z. 2011 267 367 384 2772255 10.1007/s00209-009-0623-7
- H. Alzer An inequality for the function (n) Period. Math. Hung. 2013 67 2 243 249 10.1007/s10998-013-4674-5
- H. Alzer M. Kwong Inequalities for the arithmetical functions of Euler and Dedekind Czech. Math. J. 2020 70 3 781 791 4151705 10.21136/CMJ.2020.0530-18
- H. Alzer and M. Kwong, On Landau’s inequality for the prime counting function, J. Integer Seq., 25 (7):22.7.3, 2022.
- H. Alzer M. Kwong J. Sándor Inequalities involving π(x) Rend. Sem. Mat. Univ. Padova 2022 147 237 251 10.4171/rsmup/98
- G.D. Anderson R.W. Barnard K.C. Richards M.K. Vamanamurthy M. Vuorinen Inequalities for zerobalanced hypergeometric functions Trans. Am. Math. Soc. 1995 347 5 1713 1723 10.1090/S0002-9947-1995-1264800-3
- V. Annapurna Inequalities for σ(n) and φ(n) Math. Mag. 1972 45 4 187 190 316363 10.1080/0025570X.1972.11976233
- S. Aoudjit D. Berkane P. Dusart On Robin’s criterion for the Riemann hypothesis Notes Number Theory Discrete Math. 2021 27 4 15 24 10.7546/nntdm.2021.27.4.15-24
- T.M. Apostol Introduction to Analytic Number Theory 1976 New York Springer 10.1007/978-1-4757-5579-4
- K. Atanassov New integer functions, related to φ and σ functions Bull. Number Theory. Relat. Top. 1987 11 1 3 26 995531
- K. Atanassov Remarks on φ, σ and other functions C. R. Acad. Bulg. Sci. 1988 41 8 41 44 969198
- K. Atanassov, Inequalities for φ and σ functions. I, Bull. Number Theory. Relat. Top., 15 (1):12–14, 1991.
- K. Atanassov, Inequalities for φ and σ functions. II, Bull. Number Theory. Relat. Top., 15(2):15–18, 1991.
- K. Atanassov, Inequalities for φ and σ functions. III, Bull. Number Theory. Relat. Top., 15(3):19–20, 1991.
- K. Atanassov Inequalities for φ, ψ and σ functions Octogon 1995 3 2 11 13 1374984
- K. Atanassov Inequalities for φ, ψ and σ functions II, Octogon 1996 4 2 18 20
- K. Atanassov Remark on φ and ψ function, Notes Number Theory Discrete Math. 1996 2 1 5 6 1418823
- K. Atanassov Note on φ, ψ and σ functions, Notes Number Theory Discrete Math. 2006 12 4 23 24
- K. Atanassov Inequalities related to φ, ψ and σ-functions (III) Notes Number Theory Discrete Math. 2008 14 1 16 24 1417449
- K. Atanassov Note on φ, ψ and σ-functions II, Notes Number Theory Discrete Math. 2010 16 3 25 28
- K. Atanassov Note on φ, ψ and σ-functions III, Notes Number Theory Discrete Math. 2011 17 3 13 14
- K. Atanassov Note on φ, ψ and σ-functions IV, Notes Number Theory Discrete Math. 2011 17 4 69 72
- K. Atanassov Note on φ, ψ and σ-functions V, Notes Number Theory Discrete Math. 2012 18 1 58 62 1417449
- K. Atanassov Note on φ, ψ and σ-functions VI, Notes Number Theory Discrete Math. 2013 19 1 22 24
- K. Atanassov Note on φ, ψ and σ-functions VII, Notes Number Theory Discrete Math. 2014 20 3 50 53
- K. Atanassov and J. Sándor, Inequalities between the arithmetic functions φ, ψ and σ. Part 1, Notes Number Theory Discrete Math., 25(1):50–53, 2019.
- C. Axler New bounds for the prime counting function Integers 2016 16 A22 3492964
- C. Axler A new upper bound for the sum of divisors function Bull. Aust. Math. Soc. 2017 96 3 374 379 3719855 10.1017/S0004972717000624
- C. Axler Estimates for π(x) for large values of x and Ramanujan’s prime counting inequality Integers 2018 18 A61 3819880
- C. Axler New estimates for some functions defined over primes Integers 2018 18 A52 3813836
- C. Axler Effective estimates for some functions defined over primes Integers 2022 24 A34 4732580
- C. Axler On Ramanujan’s prime counting inequality Math. Inequal. Appl. 2022 25 4 1147 1154 4513159
- C. Axler On Robin’s inequality Ramanujan J. 2023 61 3 909 919 4599658 10.1007/s11139-022-00683-0
- C. Axler J. Nicolas Large values of n/φ(n) and σ(n)/n Acta Arith. 2023 209 357 383 4665263 10.4064/aa220705-12-10
- E. Barbeau Remarks on an arithmetic derivative Can. Math. Bull. 1961 4 2 117 122 130200 10.4153/CMB-1961-013-0
- N. Batir Some new inequalities for gamma and polygamma functions, JIPAM J. Inequal. Pure Appl. Math. 2005 6 4 103 2178284
- N. Batir Sharp bounds for the psi function and harmonic numbers Math. Inequal. Appl. 2011 14 4 917 925 2884906
- D. Berkane P. Dusart On a constant related to the prime counting function Mediterr. J. Math. 2016 13 929 938 3513147 10.1007/s00009-015-0564-9
- B.C. Berndt, Ramanujan’s Notebooks, Part IV, Springer, New York, 2012.
- P.L. Chebyshev Mémoire sur les nombres premiers J. Math. Pures Appl. 1852 17 366 390
- C.-P. Chen Inequalities and monotonicity properties for some special functions J. Math. Inequal. 2009 3 79 91 2502542 10.7153/jmi-03-07
- C.-P. Chen Inequalities for the Euler-Mascheroni constant Appl. Math. Lett. 2010 23 2 161 164 2559461 10.1016/j.aml.2009.09.005
- C.-P. Chen Sharp inequalities for the harmonic numbers Carpathian J. Math. 2012 28 223 229 3027248 10.37193/CJM.2012.02.15
- H. Cohen, F. Dress, andM. ElMarraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Funct. Approximatio, Comment. Math., 37(1):51–63, 2007.
- M. Cully-Hugill D.R. Johnston On the error term in the explicit formula of Riemann–von Mangoldt Int. J. Number Theory 2023 19 6 1205 1228 4607756 10.1142/S1793042123500598
- N. Dahl, J. Olsson, and A. Loiko, Investigation of the properties of the arithmetic derivative, 2011, arXiv:1108.4762.
- J.-M. De Koninck P. Letendre New upper bounds for the number of divisors function Colloq. Math. 2020 162 1 23 52 4114050 10.4064/cm7792-6-2019
- D.W. DeTemple A quicker convergence to Euler’s constant Am. Math. Mon. 1993 100 5 468 470 1215533 10.1080/00029890.1993.11990433
- S.I. Dimitrov Lower bounds on expressions dependent on functions (n), ψ(n) and σ(n) Notes Number Theory Discrete Math. 2023 29 4 22 24 10.7546/nntdm.2023.29.4.713-716
- S.I. Dimitrov Lower bounds on expressions dependent on functions (n), ψ(n) and σ(n) II, Notes Number Theory Discrete Math. 2024 30 3 547 556 10.7546/nntdm.2024.30.3.547-556
- A.W. Dudek, Explicit Estimates in the Theory of Prime Numbers, PhD dissertation, Australian National University, Canberra, 2016.
- A.W. Dudek D.J. Platt On solving a curious inequality of Ramanujan Exp. Math. 2015 24 3 289 294 3359216 10.1080/10586458.2014.990118
- P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, PhD dissertation, University of Limoges, Limoges, 1988.
- P. Dusart, Inégalités explicites pour ψ(x), θ(x), π(x) et les nombres premiers, C. R. Math. Acad. Sci., Soc. R. Can., 21(2):53–59, 1999.
- P. Dusart, Estimates of some functions over primes without R.H., 2010, arXiv:1002.0442.
- P. Dusart Estimates of the kth prime under the Riemann hypothesis Ramanujan J. 2018 47 141 154 3857939 10.1007/s11139-017-9984-4
- P. Dusart Explicit estimates of some functions over primes Ramanujan J. 2018 45 227 251 3745073 10.1007/s11139-016-9839-4
- M. El Marraki, Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes, J. Théor. Nombres Bordx., 7 (2):407–433, 1995.
- N Elezovic, Estimations of psi function and harmonic numbers, Appl. Math. Comput., 258:192–205, 2015.
- A. Fiori H. Kadiri J. Swidinsky Sharper bounds for the error term in the prime number theorem Res. Number Theory 2023 9 3 63 4629508 10.1007/s40993-023-00454-w
- R. Garunkštis On some inequalities concerning π(x) Exp. Math. 2002 11 2 297 301 1959270 10.1080/10586458.2002.10504693
- D.M. Gordon and G. Rodemich, Dense admissible sets, in J.P. Buhler (Ed.), Algorithmic Number Theory. Third International Symposium, ANTS-III, Portland, Oregon, USA, June 1998. Proceedings, Lect. Notes Comput. Sci., Vol. 1423, Springer, Berlin, 1998, pp. 216–225.
- B.-N. Guo F. Qi Sharp bounds for harmonic numbers Appl. Math. Comput. 2011 218 991 995 2831344
- G.H. Hardy J.E. Littlewood Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes Acta Math. 1923 44 1 70 1555183 10.1007/BF02403921
- G.H. Hardy E.M. Wright An Introduction to the Theory of Numbers 1979 5 Oxford Oxford Univ. Press
- M. Hassani Approximation of π(x) by ψ(x), JIPAM J. Inequal. Pure Appl. Math. 2006 7 1 7
- M. Hassani On an inequality of Ramanujan concerning the prime counting function Ramanujan J. 2012 28 435 442 2950516 10.1007/s11139-011-9362-6
- M. Hassani Remarks on Ramanujan’s inequality concerning the prime counting function Commun. Math. 2021 29 3 473 482 4355420 10.2478/cm-2021-0014
- H. Hatalová and T. Šalǎt, Remarks on two results in the elementary theory of numbers, Acta Fac. Rer. Nat. Univ. Comenianae, Math., 20:113–117, 1969.
- H. Ishikawa, Über die Verteilung der Primzahlen, Sci. Rep. Tokyo Bunrika Daigaku, Srct. A, 2:27–40, 1934.
- D.R. Johnston A. Yang Some explicit estimates for the error term in the prime number theorem J. Math. Anal. Appl. 2023 527 2 4601071 10.1016/j.jmaa.2023.127460 127460
- V. Kannan R. Srikanth Note on φ and ψ functions, Notes Number Theory Discrete Math. 2013 19 1 19 21
- C. Karanikolov, On some properties of the function π(x), Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat., 19:357–380, 1971.
- J.C. Lagarias An elementary problem equivalent to the Riemann hypothesis Am. Math. Mon. 2002 109 6 534 543 1908008 10.1080/00029890.2002.11919883
- E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. Zweiter Band, B.G. Teubner, Leipzig, 1909.
- P. Letendre, A hybrid inequality for the number of divisors of an integer, Annales Univ. Sci. Budap. Rolando Eötvös, Sect. Comput., 52:243–254, 2021.
- A. Makowski Problem 538 Math. Mag. 1964 37 55
- G. Mincu, A few inequalities involving π(x), An. Univ. Bucur., Mat., 52(1):55–64, 2003.
- N. Minculete Two generalizations of Landau’s inequality Math. Inequal. Appl. 2012 15 3 591 598 2962455
- N. Minculete P. Dicu Several inequalities about the number of positive divisors of a natural number m Gen. Math. 2009 17 1 65 70 2496948
- D.S. Mitrinović M.S. Popadić Inequalities in Number Theory 1978 Niš Niš Univ. Press
- H. Montgomery R. Vaughan The large sieve Mathematika 1973 20 2 119 134 374060 10.1112/S0025579300004708
- C. Mortici An equation involving Dedekind’s arithmetical function Notes Number Theory Discrete Math. 2014 20 4 37 39
- L. Moser On the equation (n) = π(n) Pi Mu Epsilon J. 1951 1 5 177 180
- M. Mossinghoff T. Trudgian Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function J. Number Theory 2015 157 329 349 3373245 10.1016/j.jnt.2015.05.010
- M. Nair On Chebyshev-type inequalities for primes Am. Math. Mon. 1982 89 2 126 129 643279 10.1080/00029890.1982.11995398
- T. Negoi A faster convergence to Euler’s constant Math. Gaz. 1999 83 487 489 10.2307/3620963
- J. Nicolas G. Robin Majorations explicites pour le nombre de diviseurs de N Can. Math. Bull. 1983 26 4 485 492 716590 10.4153/CMB-1983-078-5
- D.-W. Niu Y.-J. Zhang F. Qi A double inequality for the harmonic number in terms of the hyperbolic cosine Turkish J. Anal. Number Theory 2014 2 6 223 225 10.12691/tjant-2-6-6
- A. Oppenheim Problem 5591 Am. Math. Mon. 1968 75 5 552
- L. Panaitopol, Eine Eigenschaft der Funktion über die Verteilung der Primzahlen, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér., 23(71):189–194, 1979.
- L. Panaitopol, On the inequality papb > pab, Bull. Math. Soc. Sc. Math. Roum., Nouv. Sér., 41 (89):135–139, 1998.
- L. Panaitopol Several approximations of π(x) Math. Inequal. Appl. 1999 2 3 317 324 1698377
- L. Panaitopol Inequalities concerning the function π(x): Applications Acta Arith. 2000 94 4 373 381 1779949 10.4064/aa-94-4-373-381
- L. Panaitopol, An inequality related to the Hardy–Littlewood conjecture, An. Univ. Bucur., Math., 49 (2):163–166, 2000.
- L. Panaitopol Checking the Hardy-Littlewood conjecture in special cases Rev. Roum. Math. Pures Appl. 2001 46 4 465 470 1910309
- L. Panaitopol Some generalizations for a theorem by Landau Math. Inequal. Appl. 2001 4 327 330 1841065
- D.J. Platt T.S. Trudgian The error term in the prime number theorem Math. Comput. 2021 90 328 871 881 4194165 10.1090/mcom/3583
- G. Pólya G. Szegö Problems and Theorems in Analysis II 1976 New York Springer
- T. Popoviciu, Gaz. Mat., Bucur., 46:334, 1940.
- S. Porubsky Problem E2351 Am. Math. Mon. 1972 79 4 394
- S. Ramanujan Highly composite numbers Proc. Lond. Math. Soc. 1915 14 347 409 4796923 10.1112/plms/s2_14.1.347
- O. Ramaré From explicit estimates for primes to explicit estimates for the Möbius function Acta Arith. 2013 157 4 365 379 3019422 10.4064/aa157-4-4
- G. Robin Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n Acta Arith. 1983 42 4 367 389 736719 10.4064/aa-42-4-367-389
- G. Robin, Thèse d’État, PhD dissertation, Université de Limoges, Limoges, 1983.
- G. Robin Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann J. Math. Pures Appl. 1984 63 187 213 774171
- J.B. Rosser Explicit bounds for some functions of prime numbers Am. J. Math. 1941 63 1 211 232 3018 10.2307/2371291
- J.B. Rosser L. Schoenfeld Approximate formulas for some functions of prime numbers Ill. J. Math. 1962 6 1 64 94 137689
- J.B. Rosser and L. Schoenfeld, Theory of numbers, in Abstracts of Brief Scientific Communications. International Congress of Mathematicians, Moscow, 16–26 August 1966, ICM, Moscow, 1966.
- J. Sándor Some arithmetic inequalities Bull. Number Theory. Relat. Top. 1987 11 149 161 995543
- J. Sándor Corrections to: “Some arithmetic inequalities” Bull. Number Theory. Relat. Top. 1988 12 93 94
- J. Sándor On Dedekind’s arithmetical function Seminarul de Teoria Structurilor 1988 51 1 15
- J. Sándor Some Diophantine equations for particular arithmetic functions Seminarul de Teoria Structurilor 1989 53 1 10
- J. Sándor On certain inequalities involving Dedekind’s arithmetical function Notes Number Theory DiscreteMath. 1996 2 1 1 4 1418822
- J. Sándor Geometric Theorems 2002 Diophantine Equations and Arithmetic Functions American Research Press, Rehoboth, DE
- J. Sándor, On the composition of some arithmetic functions. II, JIPAM, J. Inequal. Pure Appl. Math., 6(3):73, 2005.
- J. Sándor On inequalities σn>n and σn>n+n+3n Octogon Math. Mag. 2008 16 276 278
- J. Sándor On the inequality σn<π26ψn Octogon Math. Mag. 2008 16 295 296
- J. Sándor, Two arithmetic inequalities, Adv. Stud. Contemp. Math., Kyungshang, 20(2):197–202, 2010.
- J. Sándor On certain inequalities for φ, ψ, σ and related functions Notes Number Theory Discrete Math. 2014 20 2 52 60
- J. Sándor A note on Dedekind’s arithmetical function Notes Number Theory Discrete Math. 2016 22 1 5 7
- J. Sándor On the equation on (n) + d(n) = n and related inequalities Notes Number Theory Discrete Math. 2020 26 3 1 4 10.7546/nntdm.2020.26.3.1-4
- J. Sándor On certain inequalities for the prime counting function Notes Number Theory DiscreteMath. 2021 27 4 149 153 10.7546/nntdm.2021.27.4.149-153
- J. Sándor On certain inequalities for the prime counting function – Part II Notes Number Theory Discrete Math. 2022 28 1 124 128 10.7546/nntdm.2022.28.1.124-128
- J. Sándor On certain inequalities for the prime counting function – Part III Notes Number Theory Discrete Math. 2023 29 3 454 461 10.7546/nntdm.2023.29.3.454-461
- J. Sándor and K. Atanassov, Inequalities between the arithmetic functions ϕ, ψ and σ. Part 2, Notes Number Theory Discrete Math., 25(2):30–35, 2019.
- J. Sándor K. Atanassov Arithmetic Functions 2021 New York Nova Science
- J. Sándor S. Bhattacharjee On certain equations and inequalities involving the arithmetical functions φ(n) and d(n) Notes Number Theory Discrete Math. 2022 28 2 376 379 10.7546/nntdm.2022.28.2.376-379
- J. Sándor L. Kovács An inequality for the number of divisors Octogon Math. Mag. 2009 17 2 746 749
- J. Sándor D.S. Mitrinović B. Crstici Handbook of Number Theory I 2006 Dordrecht Springer
- A. Schinzel Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers” Acta Arith. 1961 7 1 8 130203 10.4064/aa-7-1-1-8
- L. Schoenfeld, Sharper bounds for the chebyshev functions θ(x) and ψ(x). II, Math. Comput., 30(134):337–360, 1976.
- S.L. Segal On π(x + y) ≤ π(x) + π(y) Trans. Am. Math. Soc. 1962 104 3 523 527
- R. Sivaramakrishnan Problem E1962 Am. Math. Mon. 1967 74 2 198
- R. Sivaramakrishnan C. Venkataraman Problem 5326 Am. Math. Mon. 1965 72 9 915
- A. Sîntămărian Estimating a special difference of harmonic numbers Creat. Math. Inform. 2016 25 1 99 106 3558679 10.37193/CMI.2016.01.13
- P. Solé M. Planat Extreme values of the Dedekind ψ function Comb. Number Theory 2011 3 1 33 38 2908180
- D. Somasundaram A divisor problem of Srinavasa Ramanujan in Notebook 3 Math. Stud. 1987 55 175 176
- S. Tims J. Tyrrell Approximate evaluation of Euler’s constant Math. Gaz. 1971 55 65 67 491464 10.2307/3613323
- L. Tóth Problem E3432 Am. Math. Mon. 1991 98 3 264
- L. Tóth Problem E3432 (Solution) Am. Math. Mon. 1992 99 7 684 685
- T. Trudgian Updating the error term in the prime number theorem Ramanujan J. 2016 39 225 234 3448979 10.1007/s11139-014-9656-6
- V. Udrescu Some remarks concerning the conjecture π(x + y) < π(x) + π(y) Rev. Roum. Math. Pures Appl. 1975 20 1201 1208 392868
- J. Urroz Every integer can be written as a square plus a squarefree Expo. Math. 2022 40 3 665 678 4475397 10.1016/j.exmath.2021.12.002
- R.M. Young Euler’s constant Math. Gaz. 1991 75 187 190 10.2307/3620251
- S. Zhang An improved inequality of Rosser and Schoenfeld and its application Integers 2020 20 A103 4189100
Issue
| Lithuanian Mathematical Journal, pp. 421 - 452, 2024, Lithuania, https://doi.org/10.1007/s10986-024-09655-x |
|