Autors: Dimitrov, S. I.
Title: Inequalities involving arithmetic functions
Keywords: 11A25, arithmetic functions, inequalities

Abstract: This paper presents a brief survey of the most important and the most remarkable inequalities involving the basic arithmetic functions.

References

  1. H. Alzer Inequalities for the gamma and polygamma functions Abh. Math. Semin. Univ. Hamb. 1998 68 363 372 1658358 10.1007/BF02942573
  2. H. Alzer Sharp inequalities for the harmonic numbers Expo. Math. 2006 24 4 385 388 2313126 10.1016/j.exmath.2006.02.001
  3. H. Alzer Inequalities for the harmonic numbers Math. Z. 2011 267 367 384 2772255 10.1007/s00209-009-0623-7
  4. H. Alzer An inequality for the function (n) Period. Math. Hung. 2013 67 2 243 249 10.1007/s10998-013-4674-5
  5. H. Alzer M. Kwong Inequalities for the arithmetical functions of Euler and Dedekind Czech. Math. J. 2020 70 3 781 791 4151705 10.21136/CMJ.2020.0530-18
  6. H. Alzer and M. Kwong, On Landau’s inequality for the prime counting function, J. Integer Seq., 25 (7):22.7.3, 2022.
  7. H. Alzer M. Kwong J. Sándor Inequalities involving π(x) Rend. Sem. Mat. Univ. Padova 2022 147 237 251 10.4171/rsmup/98
  8. G.D. Anderson R.W. Barnard K.C. Richards M.K. Vamanamurthy M. Vuorinen Inequalities for zerobalanced hypergeometric functions Trans. Am. Math. Soc. 1995 347 5 1713 1723 10.1090/S0002-9947-1995-1264800-3
  9. V. Annapurna Inequalities for σ(n) and φ(n) Math. Mag. 1972 45 4 187 190 316363 10.1080/0025570X.1972.11976233
  10. S. Aoudjit D. Berkane P. Dusart On Robin’s criterion for the Riemann hypothesis Notes Number Theory Discrete Math. 2021 27 4 15 24 10.7546/nntdm.2021.27.4.15-24
  11. T.M. Apostol Introduction to Analytic Number Theory 1976 New York Springer 10.1007/978-1-4757-5579-4
  12. K. Atanassov New integer functions, related to φ and σ functions Bull. Number Theory. Relat. Top. 1987 11 1 3 26 995531
  13. K. Atanassov Remarks on φ, σ and other functions C. R. Acad. Bulg. Sci. 1988 41 8 41 44 969198
  14. K. Atanassov, Inequalities for φ and σ functions. I, Bull. Number Theory. Relat. Top., 15 (1):12–14, 1991.
  15. K. Atanassov, Inequalities for φ and σ functions. II, Bull. Number Theory. Relat. Top., 15(2):15–18, 1991.
  16. K. Atanassov, Inequalities for φ and σ functions. III, Bull. Number Theory. Relat. Top., 15(3):19–20, 1991.
  17. K. Atanassov Inequalities for φ, ψ and σ functions Octogon 1995 3 2 11 13 1374984
  18. K. Atanassov Inequalities for φ, ψ and σ functions II, Octogon 1996 4 2 18 20
  19. K. Atanassov Remark on φ and ψ function, Notes Number Theory Discrete Math. 1996 2 1 5 6 1418823
  20. K. Atanassov Note on φ, ψ and σ functions, Notes Number Theory Discrete Math. 2006 12 4 23 24
  21. K. Atanassov Inequalities related to φ, ψ and σ-functions (III) Notes Number Theory Discrete Math. 2008 14 1 16 24 1417449
  22. K. Atanassov Note on φ, ψ and σ-functions II, Notes Number Theory Discrete Math. 2010 16 3 25 28
  23. K. Atanassov Note on φ, ψ and σ-functions III, Notes Number Theory Discrete Math. 2011 17 3 13 14
  24. K. Atanassov Note on φ, ψ and σ-functions IV, Notes Number Theory Discrete Math. 2011 17 4 69 72
  25. K. Atanassov Note on φ, ψ and σ-functions V, Notes Number Theory Discrete Math. 2012 18 1 58 62 1417449
  26. K. Atanassov Note on φ, ψ and σ-functions VI, Notes Number Theory Discrete Math. 2013 19 1 22 24
  27. K. Atanassov Note on φ, ψ and σ-functions VII, Notes Number Theory Discrete Math. 2014 20 3 50 53
  28. K. Atanassov and J. Sándor, Inequalities between the arithmetic functions φ, ψ and σ. Part 1, Notes Number Theory Discrete Math., 25(1):50–53, 2019.
  29. C. Axler New bounds for the prime counting function Integers 2016 16 A22 3492964
  30. C. Axler A new upper bound for the sum of divisors function Bull. Aust. Math. Soc. 2017 96 3 374 379 3719855 10.1017/S0004972717000624
  31. C. Axler Estimates for π(x) for large values of x and Ramanujan’s prime counting inequality Integers 2018 18 A61 3819880
  32. C. Axler New estimates for some functions defined over primes Integers 2018 18 A52 3813836
  33. C. Axler Effective estimates for some functions defined over primes Integers 2022 24 A34 4732580
  34. C. Axler On Ramanujan’s prime counting inequality Math. Inequal. Appl. 2022 25 4 1147 1154 4513159
  35. C. Axler On Robin’s inequality Ramanujan J. 2023 61 3 909 919 4599658 10.1007/s11139-022-00683-0
  36. C. Axler J. Nicolas Large values of n/φ(n) and σ(n)/n Acta Arith. 2023 209 357 383 4665263 10.4064/aa220705-12-10
  37. E. Barbeau Remarks on an arithmetic derivative Can. Math. Bull. 1961 4 2 117 122 130200 10.4153/CMB-1961-013-0
  38. N. Batir Some new inequalities for gamma and polygamma functions, JIPAM J. Inequal. Pure Appl. Math. 2005 6 4 103 2178284
  39. N. Batir Sharp bounds for the psi function and harmonic numbers Math. Inequal. Appl. 2011 14 4 917 925 2884906
  40. D. Berkane P. Dusart On a constant related to the prime counting function Mediterr. J. Math. 2016 13 929 938 3513147 10.1007/s00009-015-0564-9
  41. B.C. Berndt, Ramanujan’s Notebooks, Part IV, Springer, New York, 2012.
  42. P.L. Chebyshev Mémoire sur les nombres premiers J. Math. Pures Appl. 1852 17 366 390
  43. C.-P. Chen Inequalities and monotonicity properties for some special functions J. Math. Inequal. 2009 3 79 91 2502542 10.7153/jmi-03-07
  44. C.-P. Chen Inequalities for the Euler-Mascheroni constant Appl. Math. Lett. 2010 23 2 161 164 2559461 10.1016/j.aml.2009.09.005
  45. C.-P. Chen Sharp inequalities for the harmonic numbers Carpathian J. Math. 2012 28 223 229 3027248 10.37193/CJM.2012.02.15
  46. H. Cohen, F. Dress, andM. ElMarraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Funct. Approximatio, Comment. Math., 37(1):51–63, 2007.
  47. M. Cully-Hugill D.R. Johnston On the error term in the explicit formula of Riemann–von Mangoldt Int. J. Number Theory 2023 19 6 1205 1228 4607756 10.1142/S1793042123500598
  48. N. Dahl, J. Olsson, and A. Loiko, Investigation of the properties of the arithmetic derivative, 2011, arXiv:1108.4762.
  49. J.-M. De Koninck P. Letendre New upper bounds for the number of divisors function Colloq. Math. 2020 162 1 23 52 4114050 10.4064/cm7792-6-2019
  50. D.W. DeTemple A quicker convergence to Euler’s constant Am. Math. Mon. 1993 100 5 468 470 1215533 10.1080/00029890.1993.11990433
  51. S.I. Dimitrov Lower bounds on expressions dependent on functions (n), ψ(n) and σ(n) Notes Number Theory Discrete Math. 2023 29 4 22 24 10.7546/nntdm.2023.29.4.713-716
  52. S.I. Dimitrov Lower bounds on expressions dependent on functions (n), ψ(n) and σ(n) II, Notes Number Theory Discrete Math. 2024 30 3 547 556 10.7546/nntdm.2024.30.3.547-556
  53. A.W. Dudek, Explicit Estimates in the Theory of Prime Numbers, PhD dissertation, Australian National University, Canberra, 2016.
  54. A.W. Dudek D.J. Platt On solving a curious inequality of Ramanujan Exp. Math. 2015 24 3 289 294 3359216 10.1080/10586458.2014.990118
  55. P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, PhD dissertation, University of Limoges, Limoges, 1988.
  56. P. Dusart, Inégalités explicites pour ψ(x), θ(x), π(x) et les nombres premiers, C. R. Math. Acad. Sci., Soc. R. Can., 21(2):53–59, 1999.
  57. P. Dusart, Estimates of some functions over primes without R.H., 2010, arXiv:1002.0442.
  58. P. Dusart Estimates of the kth prime under the Riemann hypothesis Ramanujan J. 2018 47 141 154 3857939 10.1007/s11139-017-9984-4
  59. P. Dusart Explicit estimates of some functions over primes Ramanujan J. 2018 45 227 251 3745073 10.1007/s11139-016-9839-4
  60. M. El Marraki, Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes, J. Théor. Nombres Bordx., 7 (2):407–433, 1995.
  61. N Elezovic, Estimations of psi function and harmonic numbers, Appl. Math. Comput., 258:192–205, 2015.
  62. A. Fiori H. Kadiri J. Swidinsky Sharper bounds for the error term in the prime number theorem Res. Number Theory 2023 9 3 63 4629508 10.1007/s40993-023-00454-w
  63. R. Garunkštis On some inequalities concerning π(x) Exp. Math. 2002 11 2 297 301 1959270 10.1080/10586458.2002.10504693
  64. D.M. Gordon and G. Rodemich, Dense admissible sets, in J.P. Buhler (Ed.), Algorithmic Number Theory. Third International Symposium, ANTS-III, Portland, Oregon, USA, June 1998. Proceedings, Lect. Notes Comput. Sci., Vol. 1423, Springer, Berlin, 1998, pp. 216–225.
  65. B.-N. Guo F. Qi Sharp bounds for harmonic numbers Appl. Math. Comput. 2011 218 991 995 2831344
  66. G.H. Hardy J.E. Littlewood Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes Acta Math. 1923 44 1 70 1555183 10.1007/BF02403921
  67. G.H. Hardy E.M. Wright An Introduction to the Theory of Numbers 1979 5 Oxford Oxford Univ. Press
  68. M. Hassani Approximation of π(x) by ψ(x), JIPAM J. Inequal. Pure Appl. Math. 2006 7 1 7
  69. M. Hassani On an inequality of Ramanujan concerning the prime counting function Ramanujan J. 2012 28 435 442 2950516 10.1007/s11139-011-9362-6
  70. M. Hassani Remarks on Ramanujan’s inequality concerning the prime counting function Commun. Math. 2021 29 3 473 482 4355420 10.2478/cm-2021-0014
  71. H. Hatalová and T. Šalǎt, Remarks on two results in the elementary theory of numbers, Acta Fac. Rer. Nat. Univ. Comenianae, Math., 20:113–117, 1969.
  72. H. Ishikawa, Über die Verteilung der Primzahlen, Sci. Rep. Tokyo Bunrika Daigaku, Srct. A, 2:27–40, 1934.
  73. D.R. Johnston A. Yang Some explicit estimates for the error term in the prime number theorem J. Math. Anal. Appl. 2023 527 2 4601071 10.1016/j.jmaa.2023.127460 127460
  74. V. Kannan R. Srikanth Note on φ and ψ functions, Notes Number Theory Discrete Math. 2013 19 1 19 21
  75. C. Karanikolov, On some properties of the function π(x), Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat., 19:357–380, 1971.
  76. J.C. Lagarias An elementary problem equivalent to the Riemann hypothesis Am. Math. Mon. 2002 109 6 534 543 1908008 10.1080/00029890.2002.11919883
  77. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. Zweiter Band, B.G. Teubner, Leipzig, 1909.
  78. P. Letendre, A hybrid inequality for the number of divisors of an integer, Annales Univ. Sci. Budap. Rolando Eötvös, Sect. Comput., 52:243–254, 2021.
  79. A. Makowski Problem 538 Math. Mag. 1964 37 55
  80. G. Mincu, A few inequalities involving π(x), An. Univ. Bucur., Mat., 52(1):55–64, 2003.
  81. N. Minculete Two generalizations of Landau’s inequality Math. Inequal. Appl. 2012 15 3 591 598 2962455
  82. N. Minculete P. Dicu Several inequalities about the number of positive divisors of a natural number m Gen. Math. 2009 17 1 65 70 2496948
  83. D.S. Mitrinović M.S. Popadić Inequalities in Number Theory 1978 Niš Niš Univ. Press
  84. H. Montgomery R. Vaughan The large sieve Mathematika 1973 20 2 119 134 374060 10.1112/S0025579300004708
  85. C. Mortici An equation involving Dedekind’s arithmetical function Notes Number Theory Discrete Math. 2014 20 4 37 39
  86. L. Moser On the equation (n) = π(n) Pi Mu Epsilon J. 1951 1 5 177 180
  87. M. Mossinghoff T. Trudgian Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function J. Number Theory 2015 157 329 349 3373245 10.1016/j.jnt.2015.05.010
  88. M. Nair On Chebyshev-type inequalities for primes Am. Math. Mon. 1982 89 2 126 129 643279 10.1080/00029890.1982.11995398
  89. T. Negoi A faster convergence to Euler’s constant Math. Gaz. 1999 83 487 489 10.2307/3620963
  90. J. Nicolas G. Robin Majorations explicites pour le nombre de diviseurs de N Can. Math. Bull. 1983 26 4 485 492 716590 10.4153/CMB-1983-078-5
  91. D.-W. Niu Y.-J. Zhang F. Qi A double inequality for the harmonic number in terms of the hyperbolic cosine Turkish J. Anal. Number Theory 2014 2 6 223 225 10.12691/tjant-2-6-6
  92. A. Oppenheim Problem 5591 Am. Math. Mon. 1968 75 5 552
  93. L. Panaitopol, Eine Eigenschaft der Funktion über die Verteilung der Primzahlen, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér., 23(71):189–194, 1979.
  94. L. Panaitopol, On the inequality papb > pab, Bull. Math. Soc. Sc. Math. Roum., Nouv. Sér., 41 (89):135–139, 1998.
  95. L. Panaitopol Several approximations of π(x) Math. Inequal. Appl. 1999 2 3 317 324 1698377
  96. L. Panaitopol Inequalities concerning the function π(x): Applications Acta Arith. 2000 94 4 373 381 1779949 10.4064/aa-94-4-373-381
  97. L. Panaitopol, An inequality related to the Hardy–Littlewood conjecture, An. Univ. Bucur., Math., 49 (2):163–166, 2000.
  98. L. Panaitopol Checking the Hardy-Littlewood conjecture in special cases Rev. Roum. Math. Pures Appl. 2001 46 4 465 470 1910309
  99. L. Panaitopol Some generalizations for a theorem by Landau Math. Inequal. Appl. 2001 4 327 330 1841065
  100. D.J. Platt T.S. Trudgian The error term in the prime number theorem Math. Comput. 2021 90 328 871 881 4194165 10.1090/mcom/3583
  101. G. Pólya G. Szegö Problems and Theorems in Analysis II 1976 New York Springer
  102. T. Popoviciu, Gaz. Mat., Bucur., 46:334, 1940.
  103. S. Porubsky Problem E2351 Am. Math. Mon. 1972 79 4 394
  104. S. Ramanujan Highly composite numbers Proc. Lond. Math. Soc. 1915 14 347 409 4796923 10.1112/plms/s2_14.1.347
  105. O. Ramaré From explicit estimates for primes to explicit estimates for the Möbius function Acta Arith. 2013 157 4 365 379 3019422 10.4064/aa157-4-4
  106. G. Robin Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n Acta Arith. 1983 42 4 367 389 736719 10.4064/aa-42-4-367-389
  107. G. Robin, Thèse d’État, PhD dissertation, Université de Limoges, Limoges, 1983.
  108. G. Robin Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann J. Math. Pures Appl. 1984 63 187 213 774171
  109. J.B. Rosser Explicit bounds for some functions of prime numbers Am. J. Math. 1941 63 1 211 232 3018 10.2307/2371291
  110. J.B. Rosser L. Schoenfeld Approximate formulas for some functions of prime numbers Ill. J. Math. 1962 6 1 64 94 137689
  111. J.B. Rosser and L. Schoenfeld, Theory of numbers, in Abstracts of Brief Scientific Communications. International Congress of Mathematicians, Moscow, 16–26 August 1966, ICM, Moscow, 1966.
  112. J. Sándor Some arithmetic inequalities Bull. Number Theory. Relat. Top. 1987 11 149 161 995543
  113. J. Sándor Corrections to: “Some arithmetic inequalities” Bull. Number Theory. Relat. Top. 1988 12 93 94
  114. J. Sándor On Dedekind’s arithmetical function Seminarul de Teoria Structurilor 1988 51 1 15
  115. J. Sándor Some Diophantine equations for particular arithmetic functions Seminarul de Teoria Structurilor 1989 53 1 10
  116. J. Sándor On certain inequalities involving Dedekind’s arithmetical function Notes Number Theory DiscreteMath. 1996 2 1 1 4 1418822
  117. J. Sándor Geometric Theorems 2002 Diophantine Equations and Arithmetic Functions American Research Press, Rehoboth, DE
  118. J. Sándor, On the composition of some arithmetic functions. II, JIPAM, J. Inequal. Pure Appl. Math., 6(3):73, 2005.
  119. J. Sándor On inequalities σn>n and σn>n+n+3n Octogon Math. Mag. 2008 16 276 278
  120. J. Sándor On the inequality σn<π26ψn Octogon Math. Mag. 2008 16 295 296
  121. J. Sándor, Two arithmetic inequalities, Adv. Stud. Contemp. Math., Kyungshang, 20(2):197–202, 2010.
  122. J. Sándor On certain inequalities for φ, ψ, σ and related functions Notes Number Theory Discrete Math. 2014 20 2 52 60
  123. J. Sándor A note on Dedekind’s arithmetical function Notes Number Theory Discrete Math. 2016 22 1 5 7
  124. J. Sándor On the equation on (n) + d(n) = n and related inequalities Notes Number Theory Discrete Math. 2020 26 3 1 4 10.7546/nntdm.2020.26.3.1-4
  125. J. Sándor On certain inequalities for the prime counting function Notes Number Theory DiscreteMath. 2021 27 4 149 153 10.7546/nntdm.2021.27.4.149-153
  126. J. Sándor On certain inequalities for the prime counting function – Part II Notes Number Theory Discrete Math. 2022 28 1 124 128 10.7546/nntdm.2022.28.1.124-128
  127. J. Sándor On certain inequalities for the prime counting function – Part III Notes Number Theory Discrete Math. 2023 29 3 454 461 10.7546/nntdm.2023.29.3.454-461
  128. J. Sándor and K. Atanassov, Inequalities between the arithmetic functions ϕ, ψ and σ. Part 2, Notes Number Theory Discrete Math., 25(2):30–35, 2019.
  129. J. Sándor K. Atanassov Arithmetic Functions 2021 New York Nova Science
  130. J. Sándor S. Bhattacharjee On certain equations and inequalities involving the arithmetical functions φ(n) and d(n) Notes Number Theory Discrete Math. 2022 28 2 376 379 10.7546/nntdm.2022.28.2.376-379
  131. J. Sándor L. Kovács An inequality for the number of divisors Octogon Math. Mag. 2009 17 2 746 749
  132. J. Sándor D.S. Mitrinović B. Crstici Handbook of Number Theory I 2006 Dordrecht Springer
  133. A. Schinzel Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers” Acta Arith. 1961 7 1 8 130203 10.4064/aa-7-1-1-8
  134. L. Schoenfeld, Sharper bounds for the chebyshev functions θ(x) and ψ(x). II, Math. Comput., 30(134):337–360, 1976.
  135. S.L. Segal On π(x + y) ≤ π(x) + π(y) Trans. Am. Math. Soc. 1962 104 3 523 527
  136. R. Sivaramakrishnan Problem E1962 Am. Math. Mon. 1967 74 2 198
  137. R. Sivaramakrishnan C. Venkataraman Problem 5326 Am. Math. Mon. 1965 72 9 915
  138. A. Sîntămărian Estimating a special difference of harmonic numbers Creat. Math. Inform. 2016 25 1 99 106 3558679 10.37193/CMI.2016.01.13
  139. P. Solé M. Planat Extreme values of the Dedekind ψ function Comb. Number Theory 2011 3 1 33 38 2908180
  140. D. Somasundaram A divisor problem of Srinavasa Ramanujan in Notebook 3 Math. Stud. 1987 55 175 176
  141. S. Tims J. Tyrrell Approximate evaluation of Euler’s constant Math. Gaz. 1971 55 65 67 491464 10.2307/3613323
  142. L. Tóth Problem E3432 Am. Math. Mon. 1991 98 3 264
  143. L. Tóth Problem E3432 (Solution) Am. Math. Mon. 1992 99 7 684 685
  144. T. Trudgian Updating the error term in the prime number theorem Ramanujan J. 2016 39 225 234 3448979 10.1007/s11139-014-9656-6
  145. V. Udrescu Some remarks concerning the conjecture π(x + y) < π(x) + π(y) Rev. Roum. Math. Pures Appl. 1975 20 1201 1208 392868
  146. J. Urroz Every integer can be written as a square plus a squarefree Expo. Math. 2022 40 3 665 678 4475397 10.1016/j.exmath.2021.12.002
  147. R.M. Young Euler’s constant Math. Gaz. 1991 75 187 190 10.2307/3620251
  148. S. Zhang An improved inequality of Rosser and Schoenfeld and its application Integers 2020 20 A103 4189100

Issue

Lithuanian Mathematical Journal, pp. 421 - 452, 2024, Lithuania, https://doi.org/10.1007/s10986-024-09655-x

Цитирания (Citation/s):
1. Sandor J., Atanassov K., Inequalities with Some Arithmetic Functions, 2025, Mathematics, issue 8, vol. 13, DOI 10.3390/math13081253, eissn 22277390 - 2025 - в издания, индексирани в Scopus и/или Web of Science
2. Mandal, S, A note on newly introduced arithmetic functions and φ+and σ+, NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, vol 31, 2025, issn: 1310-5132, eissn: 2367-8275, doi: 10.7546/nntdm.2025.31.2.404-409 - 2025 - в издания, индексирани в Web of Science
3. Wang, CT, On an inequality about Euler's totient function, NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, vol 31, 2025, issn: 1310-5132, eissn: 2367-8275, doi: 10.7546/nntdm.2025.31.2.299-304 - 2025 - в издания, индексирани в Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science