|
|
---|
Autors: Todorov, G. D., Kralov, I. M., Kamberov, K. H., Zahariev E., Sofronov, Y. P., Zlatev, B. N. Title: An Assessment of the Embedding of Francis Turbines for Pumped Hydraulic Energy Storage Keywords: failure mechanism, Francis turbine, spiral casing embedding, stay vanesAbstract: In this paper, analyses of Francis turbine failures for powerful Pumped Hydraulic Energy Storage (PHES) are conducted. The structure is part of PHES Chaira, Bulgaria (HA4—Hydro-Aggregate 4). The aim of the study is to assess the structure-to-concrete embedding to determine the possible causes of damage and destruction of the HA4 Francis spiral casing units. The embedding methods that have been applied in practice for decades are discussed and compared to those used for HA4. A virtual prototype is built based on the finite-element method to clarify the influence of workloads under the generator mode. The stages of the simulation include structural analysis of the spiral casing and concrete under load in generator mode, as well as structural analysis of the spiral casing under loads in generator mode without concrete. Both simulations are of major importance. Since the failure of the surface between the turbine, the spiral casing, and the concrete is observed, the effect of the growing contact gap (no contact) is analyzed. The stresses, strains, and displacements of the turbine units are simulated, followed by an analysis for reliability. The conclusions reveal the possible reasons for cracks and destruction in the main elements of the structure. References - Javier F. Christian B. Aging of European power plant infrastructure as an opportunity to evolve towards sustainability Int. J. Hydrogen Energy 2017 42 18081 18091
- Kougias I. Aggidis G. Avellan F. Deniz S. Lundin U. Moro A. Muntean S. Novara D. Pérez-Díaz J.I. Quaranta E. et al. Analysis of emerging technologies in the hydropower sector Renew. Sustain. Energy Rev. 2019 113 109257 10.1016/j.rser.2019.109257
- Toufani P. Nadar E. Kocaman A.S. Operational benefit of transforming cascade hydropower stations into pumped hydro energy storage systems J. Energy Storage 2022 51 104444 10.1016/j.est.2022.104444
- Punys S. Baublys R. Kasiulis E. Vaisvila A. Pelikan B. Steller J. Assessment of renewable electricity generation by pumped storage power plants in EU Member State Renew. Sustain. Energy Rev. 2013 26 190 200 10.1016/j.rser.2013.05.072
- Yang J. Robert B. Jackson R.B. Opportunities and barriers to pumped-hydro energy storage in the United States Renew. Sustain. Energy Rev. 2011 15 839 844 10.1016/j.rser.2010.09.020
- Manikas K. Skroufouta S. Baltas E. Simulation and evaluation of pumped hydropower storage (PHPS) system at Kastraki reservoir Renew. Energy 2024 222 119888 10.1016/j.renene.2023.119888
- Amirante R. Cassone E. Distaso E. Tamburrano P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies Energy Convers. Manag. 2017 132 372 387 10.1016/j.enconman.2016.11.046
- Kucukali S. Finding the most suitable existing hydropower reservoirs for the development of pumped-storage schemes: An integrated approach Renew. Sustain. Energy Rev. 2014 37 502 508 10.1016/j.rser.2014.05.052
- Wilson I.A.G. Barbour E. Ketelaer T. Kuckshinrichs W. An analysis of storage revenues from the time-shifting of electrical energy in Germany and Great Britain from 2010 to 2016 J. Energy Storage 2018 17 446 456 10.1016/j.est.2018.04.005
- Favrel A. Müller A. Landry C. Yamamoto K. Avellan F. Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry Exp. Fluids 2015 56 215 10.1007/s00348-015-2085-5
- Favrel A. Müller A. Landry C. Yamamoto K. Avellan F. LDV Survey of Cavitation and Resonance Effect on the Precessing Vortex Rope Dynamics in the Draft Tube of Francis Turbines Exp. Fluids 2016 57 168 10.1007/s00348-016-2257-y
- Alligné S. Nicolet C. Tsujimoto Y. Avellan F. Cavitation Surge Model ling in Francis Turbine Draft Tube J. Hydraul. Res. 2014 52 399 411 10.1080/00221686.2013.854847
- Müller A. Favrel A. Landry C. Avellan F. Fluid-Structure Interaction Mechanisms Leading to Dangerous Power Swings in Francis Turbines at Full Load J. Fluids Struct. 2017 69 56 71 10.1016/j.jfluidstructs.2016.11.018
- Panov L. Chirkov D. Cherny S. Pylev I. Sotnikov A. Numerical Simulation of Steady Cavitating Flow of Viscous Fluid in a Francis Hydroturbine Thermophys. Aeromech. 2012 19 415 427 10.1134/S0869864312030079
- Susan-Resiga R. Ciocan G. Anton I. Avellan F. Analysis of the Swirling Flow Downstream a Francis Turbine Runner ASME J. Fluids Eng. 2006 128 177 189 10.1115/1.2137341
- Rudolf P. Štefan D. Decomposition of the Swirling Flow Field Downstream of Francis Turbine Runner IOP Conf. Ser. Earth Environ. Sci. 2012 15 062008 10.1088/1755-1315/15/6/062008
- Dörfler P. Keller M. Braun O. Francis Full-Load Surge Mechanism Identified by Unsteady 2-Phase CFD IOP Conf. Ser. Earth Environ. Sci. 2010 12 012026 10.1088/1755-1315/12/1/012026
- Mössinger P. Conrad P. Jung A. Transient Two-Phase CFD Simulation of Overload Pressure Pulsation in a Prototype Sized Francis Turbine Considering the Waterway Dynamics IOP Conf. Ser. Earth Environ. Sci. 2014 22 032033 10.1088/1755-1315/22/3/032033
- Chirkov D. Panov L. Cherny S. Pylev I. Numerical Simulation of Full Load Surge in Francis Turbines Based on Three-Dimensional Cavitating Flow Model IOP Conf. Ser. Earth Environ. Sci. 2014 22 032036 10.1088/1755-1315/22/3/032036
- Wack J. Riedelbauch S. Numerical Simulations of the Cavitation Phenomena in a Francis Turbine at Deep Part Load Conditions J. Phys. Conf. Ser. 2015 656 012074 10.1088/1742-6596/656/1/012074
- Trivedi C. Cervantes M.J. State of the Art in Numerical Simulation of High Head Francis Turbines Renew. Energy Environ. Sustain. 2016 1 20 10.1051/rees/2016032
- Yasuda M. Watanabe S. How to Avoid Severe Incidents at Hydropower Plants Int. J. Fluid Mach. Syst. 2017 10 296 306 10.5293/IJFMS.2017.10.3.296
- Price J.W.H. The failure of the Dartmouth turbine casing Int. J. Press. Vessels Pip. 1998 75 559 566 10.1016/S0308-0161(98)00048-9
- Rabbat B.G. Russell H.G. Friction Coefficient of Steel on Concrete or Grout J. Struct. Eng. 1985 111 505 515 10.1061/(ASCE)0733-9445(1985)111:3(505)
- Baltay P. Gjelsvik A. Coefficient of Friction for Steel on Concrete at High Normal Stress J. Mater. Civ. Eng. 1990 2 46 49 10.1061/(ASCE)0899-1561(1990)2:1(46)
- Available online: https://en.wikipedia.org/wiki/Sayano-Shushenskaya_power_station_accident (accessed on 4 July 2024)
- Itabashi S. Yamazaki M. Francis Turbine Assembly Patent No, EP0786504B2 2 March 2005
- Gao X. Fu D. Wu H. Embedment of Steel Spiral Casings in Concrete: Lessons from a Structural Deformation Accident in China Appl. Sci. 2022 12 8395 10.3390/app12178395
- Tian Z. Zhang Y. Ma Z. Chen J. Effect of concrete cracks on dynamic characteristics of powerhouse for giant-scale hydrostation Trans. Tianjin Univ. 2008 14 307 312 10.1007/s12209-008-0052-4
- Yu Y. Zhang Q.L. Wu H.G. Reinforcement calculation for spiral casing embedded with cushion layer of hydropower station. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban) J. Tianjin Univ. Sci. Technol. 2009 42 673 677
- Xu X. Li M. Ma Z. Zhang H. He P. Simulation and analysis of the constant internal pressure spiral casing with non-uniform gap. Shuili Fadian Xuebao J. Hydroelectr. Eng. 2009 28 75 80
- Ma Z. Zhang C. Static and dynamic damage analysis of mass concrete in hydropower house of Three Gorges Project Trans. Tianjin Univ. 2010 16 433 440 10.1007/s12209-010-1442-y
- Panda S. Jena J. Basa B. Stress analysis around spiral casing of Francis turbine of a Hydel power house by finite element method Proceedings of the International Conference on Structural Engineering and Mechanics Rourkela, India 20–22 December 2013
- Chen W. Xian L. Analysis and treatment of a raising deformation accident of the No.9 spiral casing structure in Xiluodu hydroelectric power plant Shaanxi Water Resour. 2012 5 41 43
- Zhang Q.-L. Wu H.-G. Advance in research and application of spiral casing structure with a membrane in hydroelectric power plant. Shuili Xuebao J. Hydraul. Eng. 2012 43 869 876
- Zhang Q.L. Wu H.G. Effect of compressible membrane’s nonlinear stress-strain behavior on spiral casing structure Struct. Eng. Mech. 2012 42 73 93 10.12989/sem.2012.42.1.073
- Zhang Q.L. Wu H.G. Using softened contact relationship describing compressible membrane in FEA of spiral casing structure Arch. Civ. Mech. Eng. 2013 13 506 517 10.1016/j.acme.2013.04.009
- Zhang Q.L. Wu H.G. Sliding behaviour of steel liners on surrounding concrete in c-cross-sections of spiral casing structures Struct. Eng. Int. 2016 26 333 340 10.2749/101686616X14676302920032
- Zhang Q.L. Wu H.G. Embedment of steel spiral casings in concrete: China’s experience Renew. Sustain. Energy Rev. 2017 72 1271 1281 10.1016/j.rser.2016.10.048
- Wu H. Shen Y. Jiang K. Shi J. Structural Analysis of the Embedded Spiral Casing in the Three Gorges Hydropower Station Pract. Period. Struct. Des. Constr. 2012 17 41 47 10.1061/(ASCE)SC.1943-5576.0000099
- Guo T. Zhang L. Li S. Research on three-dimensional simulation algorithm of preloaded filling spiral casing with non-uniform gap, Shuili Xuebao J. Hydraul. Eng. 2015 46 1434 1443
- Zhang Q.-L. Hu C. Hu L. Wu H.-G. Compression-Resilience Responses of Commonly Used Membrane Materials in Spiral Casing Structures of Hydroelectric Power Plants: Experimental Investigation J. Mater. Civ. Eng. 2018 30 06018005 10.1061/(ASCE)MT.1943-5533.0002284
- Zhang Z. Wu H. Shi C. Zhang Q. Su K. Hu L. Numerical modeling of preloaded filling spiral casing structure Lat. Am. J. Solids Struct. 2018 15 110 10.1590/1679-78255048
- Qi Y. Chen Q. Gong Y. Xie Z. Optimization analysis of giant spiral casing with combined embedding method IOP Conf. Ser. Earth Environ. Sci. 2019 304 032064 10.1088/1755-1315/304/3/032064
- Guo T. Zhang L. Li S. Influences of boundary conditions on the initial gap of preloading water-filled spiral casing Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2020 36 40 47
- Birtarescu E. Constantin Câmpian V. Nedelcu N. Strength Calculations Performed on the Spiral Casing of a Francis Turbine Operating in Secondary Control Regime Sci. Bull. Mech. Eng. 2021 83 261 272
- Gao X. Wu H. Fu D. Effect of Temporary Internal Water Pressure on Structural Performance of Spiral Casing Structure in Pumped-Storage Power Plants Energies 2022 15 2463 10.3390/en15072463
- Xu W. Wang G. Ma Z. Kang F. Analysis of the Joint Bearing Capacity of Composite Cushion-Spiral Casing Structures for Hydropower Stations Considering the Damage Mechanisms of Surrounding Concrete Water 2024 16 112 10.3390/w16010112
- Todorov G.D. Kamberov K.H. Black box/white box hybrid method for virtual prototyping validation of multiphysics simulations and testing IOP Conf. Ser. Mater. Sci. Eng. 2020 878 012051 10.1088/1757-899X/878/1/012051
- Malakov I. Zv V. Tzeaharinonov V. Size Ranges Optimization Proc. Eng. 2015 100 791 800 10.1016/j.proeng.2015.01.433
- Vacheva G. Hinov N. Modeling and simulation of hybrid electric vehicles Proceedings of the 46th International Conference on Applications of Mathematics in Engineering and Economics Sofia, Bulgaria 7–13 June 2021
Issue
| Water (Switzerland), vol. 16, 2024, , https://doi.org/10.3390/w16162252 |
|
Цитирания (Citation/s):
1. Zhang Z., Luo Y., Yang G., Zhang S., Wang Z., Numerical Investigation of Symmetrical and Asymmetrical Characteristics of a Preloading Spiral Case and Concrete during Load Rejection, Symmetry, 16(10), art. no. 1277. - 2024 - в издания, индексирани в Scopus или Web of Science
2. Luo Y., Li Z., Zhang S., Ren Q., Wang Z., Hydrodynamic Characteristics of Preloading Spiral Case and Concrete in Turbine Mode with Emphasis on Preloading Clearance, Processes, 12(9), art. no. 2056. - 2024 - в издания, индексирани в Scopus или Web of Science
3. Lojda J., Strnadel J., Simek V., (...), Hayes M., Popp R., The LoLiPoP-IoT Project: Long Life Power Platforms for Internet of Things, Proceedings - 2024 27th Euromicro Conference on Digital System Design, DSD 2024, pp. 604-611, 2024 - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science