Autors: Donkov S., Kopchev, V. S., Stefanov, I. Ж., Veltchev T.V.
Title: Differential and integral scaling laws of the mass density of molecular clouds
Keywords: molecular clouds, probability density function, scaling laws, structure

Abstract: In this work, we investigate the mass density-size scaling law in molecular clouds(MCs). This relation reflects the fractal nature of MCs and plays a key role for understanding the physics, structure and evolution of these objects. We make use of the notion ”ensemble of MCs”, introduced in our previous work (Donkov, Veltchev & Klessen, 2017), in which all MCs with the same probability density function (PDF) of mass density and effective size are represented by an abstract spherical cloud with the same PDF and size. In this spirit, the model is built on the base of abstract scales of the clouds’ substructures (which are simply the radii of the spherical object). We consider two forms of the mass density-size scaling law: differential and integral, which in turn reveal the local and the global fractal clouds’ structure. Both scaling functions are characterized by their scaling exponents, which can be explicitly expressed by the PDF of mass density, in the general case. Moreover, we derive a first order linear differential equation connecting the two scaling exponents and obtain its exact solution. As examples, we apply this abstract construction to two PDFs: the so called power-law tail and the log-normal. Both have great importance for MC structure and evolution, as the latter corresponds to the earlier stages of clouds’ evolution, when supersonic turbulence dominates the physical processes, while the former describes the latest stages of evolution, when star-formation takes place. The obtained results for the scaling exponents in both examples are qualitatively and numerically consistent with respective observations and simulations of MCs.

References

  1. Ballesteros-Paredes, J. & Mac Low, M.-M.; 2002, ApJ, 570, 734
  2. Ballesteros-Paredes, J.; 2006, MNRAS, 372, 443
  3. Ballesteros-Paredes, J.; D’Alessio, P. & Hartmann, L.; 2012, MNRAS, 427, 2562
  4. Ballesteros-Paredes, J.; Andre, P.; Hennebelle P.; Klessen, R. S.; Inutsuka, S.; Kruijssen, J. M. D.; Chevance, M.; Nakamura, F.; Adamo, A.; Vazquez-Semadeni, E.; 2020, Space Science Reviews, 216, 5, 76
  5. Dib, S.; Burkert, A. & Hujeirat, A.; 2004, Ap&SS, 365, 166
  6. Donkov, S.; Veltchev, T. & Klessen, R. S.; 2011, MNRAS, 418, 916
  7. Donkov, S.; Veltchev, T. & Klessen, R. S.; 2012, MNRAS, 423, 889
  8. Donkov, S.; Stanchev, O. & Veltchev, T.; 2012, Proc. of the VIII Serbian-Bulgarian Astron. Conf., Leskovac, Serbia, May 8-12, 2012, eds. M. K. Tsvetkov, M. S. Dimitrijevic, K. Tsvetkova, O. Kounchev, Z. Mijajlovic arXiv 1206.1444
  9. Donkov, S.; Veltchev, T. & Klessen, R. S.; 2017, MNRAS, 466, 914
  10. Donkov, S. & Stefanov, I. Z.; 2019, MNRAS, 485, 3224D
  11. Elmegreen, B. G.; 1997, ApJ, 486, 944E
  12. Elmegreen, B. & Scalo, J.; 2004, ARA&A, 42, 211E
  13. Federrath, C.; Klessen, R. & Schmidt, W.; 2008, ApJ, 688, L79
  14. Federrath, C.; Roman-Duval, J.; Klessen, R.; Schmidt, W.; Mac Low, M.-M.; 2010, A&A, 512, 81
  15. Ferriere, K. M.; 2001, Reviews of Modern Physics, 73, 1031
  16. Girichidis, P.; Konstandin, L.; Whitworth, A. P.; Klessen, R. S.; 2014, ApJ, 781, 91
  17. Hennebelle, P. & Falgarone, E.; 2012, A&ARv, 20, 55H
  18. Heyer, M.; Krawczyk, C.; Duval, J.; Jackson, J.; 2009, ApJ, 699, 1092
  19. Kauffmann, J.; Pilai, T.; Shetty, R.; Myers, P.C.; Goodman, A.A; 2010a, ApJ, 712, 1137
  20. Kauffmann, J.; Pilai, T.; Shetty, R.; Myers, P.C.; Goodman, A.A; 2010b, ApJ, 716, 433
  21. Klessen, R. S.; 2000, ApJ, 535, 869
  22. Klessen, R. S. & Glover, S. C. O.; 2016, Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality, Saas-Fee Advanced Course
  23. Kritsuk, A.; Norman, M.; Padoan, P.; Wagner, R.; 2007, ApJ, 665, 416
  24. Kritsuk, A.; Norman, M. & Wagner, R.; 2011, ApJ, 727, L20
  25. Larson, R.; 1981, MNRAS, 194, 809
  26. Lombardi, M.; Alves, J. & Lada C., 2010, A&A, 519, 7
  27. Myers, P. & Goodman A.; 1988, ApJ, 329, 392
  28. Padoan, P. & Nordlund, A.; 2002, ApJ, 576, 870
  29. Padoan, P.; Juvela, M.; Kritsuk, A.; Norman, M.; 2006, ApJ, 653, L125
  30. Semkov, E. H.; 2023, Bulgarian Astronomical Journal, Vol. 39, p. 94
  31. Solomon, P.; Rivolo, A.; Barrett, J.; Yahil, A.; 1987, ApJ, 319, 730
  32. Vázquez-Semadeni, E.; 1994, ApJ, 423, 681
  33. Vázquez-Semadeni, E.; Ballesteros-Paredes, J. & Rodriguez, L.; 1997, ApJ, 474, 292
  34. Vázquez-Semadeni, E.; Palau, A.; Ballesteros-Paredes, J.; Gómez, G.; Zamora-Aviles, M.; 2019, MNRAS, 490, 3061
  35. Veltchev, T.; Klessen, R. S. & Clark, P.; 2011, MNRAS, 411, 301
  36. Veltchev, T.; Donkov, S. & Klessen, R. S.; 2013, MNRAS, 432, 3495
  37. Veltchev, T.; Donkov, S. & Klessen, R. S.; 2016, MNRAS, 459, 2432

Issue

Bulgarian Astronomical Journal, vol. 42, 2025, Bulgaria, ISBN 13145592 13132709

Copyright Institute of Astronomy and NAO, Bulgarian Academy of Sciences

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus