Autors: Iliev, R. S., Tsalov, T. I.
Title: Investigation of a cross-flow wind turbine with a hybrid frontal guiding device
Keywords: cross-flow wind turbine, guide apparatus, power curves

Abstract: The research results of a new type of frontal guide device for vertical axis wind turbines are presented. The guiding device is composed of cylindrical guide vanes and deflector. The design is derived from two different guiding devices: cylindrical guiding apparatus and so-called omni-directional guiding apparatus, which consists of plates evenly placed around the turbine's runner. The experiments were carried out on the laboratory test bench No. 7 (wind turbines) in the Laboratory of Hydropower and Hydraulic Turbomachinery at the Technical University of Sofia. According to the obtained data, the new guiding device increases the efficiency of the turbine up to 2.5 times. A comparison is made between the obtained operating curves and those of similar wind turbines, published in various reputable journals.

References

  1. Ryu I. Hoang A. D. Kim J. Lee K. Yang C. 2016 A Study on the Performance of a 5 kW Scale VAWT with Omni-Directional Guide Vanes KSFM 19 43 47
  2. Kołodziejczyk K. Ptak R. 2022 Numerical Investigations of the Vertical Axis Wind Turbine with Guide Vane Energies 15 22
  3. Obretenov V. Iliev R. 2021 Determination of The Optimal Parameters of a Vertical Axis Wind Turbine with Cylindrical Guide Vane Unit EFEA
  4. Obretenov V. Iliev R. 2021 Investigation of a vertical axis wind turbine with frontal cylindrical guide vane unit E3S Web Conf. 327
  5. Obrerenov V. Iliev R. 2021 Investigation of a vertical axis wind turbine with frontal cylindrical guide vane unit E3S Web Conf. Ser.: Earth Environ. Sci. 1234
  6. Tareq A. I. Sattar A. Omar A. A. Yasir A. 2020 Energy Recovery of Moving Vehicles'Wakes in Highways by Vertical Axis Wind Turbines FME Transactions 48 3 557 565
  7. Tian W. Mao Z. Li Y. 2017 Energy Numerical Simulations in the Wake of a Moving Car Energies 10 4
  8. Al-Aqel A. A. Lim B. K. Mohd Noor E. E. Yap T. C. Alkaff S. A. 2016 Potentiality of small wind turbines along highway in Malaysia 1CORAS 10 1 6
  9. Iliev R. Tsalov Ts. 2023 Harnessing of the low energy wind potential 1NNOE 1234
  10. Iliev R. Tsalov Ts. 2023 Investigation of the efficiency of VAWTs at different wind speeds 1NNOE 1128
  11. Gad T. Shokry A. Afify R. Saber E. 2020 Experimental Study of Two, Two-Reversed and Four Blade IceWind Turbine Int. J. Appl, Eng. 15 1122 1134
  12. Mansour H. Afify R. 2020 Design and 3D CFD Static Performance Study of a Two-Blade IceWind Turbine Energies 13 20
  13. Jinshah B. S. Sreejith B. 2018 Numerical and experimental study on a modified Savonius rotor with guide blades Int. J. Green Energy 15 744 757
  14. Zemamou M. Aggour M. Toumi A. 2017 Review of savonius wind turbine design and performance 1NNOE 141 383 388
  15. Alice A. Ochieng F. X. Kinyua R. 2015 Design and Testing of a Low Cost and Higher Efficient Savonius Wind Turbine's Rotor Blade for Low Wind Speed Applications JSRE 2 23 35
  16. Sivamani S. Preadanna R. Arun J. Chrisopher M. Premkumar T. M. Kumar P. B. Yadav Y. Hariram V. 2020 Assessing Small Cross Flow Wind Turbine for Urban Rooftop Power LNEE 687 105 114
  17. A review on Iasos cross-flow wind turbine. Available at: https://iasos.eu/. Accessed at: 20.03.2024
  18. Ayman A. Maatiah A. 1993 The design of the Banki wind turbine and its testing in real wind conditions Renew. Energy 3 6-7 781 786
  19. Wenlong T. Baowei S. Zhaoyong M. 2014 A Numerical Study on the Improvement of the Performance of a Banki Wind Turbine Wind Eng. 38 1 109 114
  20. Tjahjana D. D. D. P. Purbaningrum P. Haidi S. Wicaksono Y. A. Adiputra D. 2018 Experimental Investigation on Performance of Crossflow Wind Turbine as Effect of Blades Number Wind AIP Conf. Proc. 1931 1
  21. Mahmoud M. Salameh T. Makky A. Abdelkareem M. Olabi A. 2023 Chapter 3.5-Case studies and analysis of wind energy systems Renewable Energy : Solar, Wind, and Hydropower 1 363 387
  22. Lecanu P. Mouaze D. Breard J. 2024 Theoretical calculation of wind (Or water) turbine considering kinetic and potential energy to exceed the Betz limit HAL.
  23. Acosta J. Ortega K. 2022 Analysis of the dependence of the parameters on the power coefficient for a vertical axis hydrokinetic turbine limit Ciencia Latina Multidisciplinary Scientific Magazine 6
  24. Kamal M. Abbasan S. K. 2024 A Development of correlation for the power coefficient of the hydrokinetic turbine rotor having straight-bladed Darrieus and helical-bladed Savonius rotors Braz. Soc. Mech. Sci. Eng. 46
  25. Todorov G. Obretenov V. Kamberov K. Tsalov T. Zlatev B. 2021 Concept and Physical Prototyping of Micro Hydropower System Using Vetical Crossflow Turbine EFEA 1 4
  26. Kamberov K. Zlatev B. Todorov T. 2019 Design Development of a Car Fan Shroud Based on Virtual Prototypes Springer 283
  27. Dhakal R. Yadav N. K. B. K. Kumal B. B. Moussa H. 2020 Feasibility of distributed wind energy generation in Jumla Nepal Int. J. Renew. Energy Res. 10
  28. Stadler S. Hughes T. 2005 Wind Power Climatology Oliver EESS 807 813
  29. Wenehenubun F. Saputra A. Sutanto H. 2015 An Experimental Study on the Performance of Savonius Wind Turbines Related With The Number Of Blades Energy Procedia 68 297 304
  30. Leelakrishnan E. Kumar M. S. Selvaraj S. D. Vignesh N. S. Raja T. S. A. 2020 Numerical evilation of optiim tip speed ratio of darrieus type vertical axis wind turbine Energy Procedia 33 4719 4722
  31. Chaichana T. Chaitep S. 2015 Performance Evaluation of Co-Axis Counter-Rotation Wind Turbine Energy Procedia 79 149 156
  32. Reyes V. Rodriguez J. Carranza O. Ortega R. 2015 Review of mathematical models of both the power coefficient and the torqe coefficient in wind turbines ISIE 1458 1463
  33. An overview of Ansys Fluent software. Available at: https://www.ansys.com/products/fluids/ansys-fluent. Accessed at 22.03.2024
  34. Navier-Stokes Equations-an overview. Available at: https://www.sciencedirect.com/topics/physics-and-astronomy/navier-stokes-equation. Accessed at 28.03.2024
  35. An overview of the Menter Shear Stress Transport Turbulence Model. Available at: https://turbmodels.larc.nasa.gov/sst.html. Accessed at 28.03.2024
  36. K-epsilon Model-an overview. Available at: https://www.sciencedirect.com/topics/engineering/k-epsilon-model. Accessed at 21.03.2024
  37. Howell R. Qin N. Edwards J. Durrani N. 2010 Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine Renew. Energy 35 412 422
  38. Hilewit D. Matida E. Fereidooni A. Ella H. Nitzche F. 2019 Power coefficient measurements of a novel vertical axis wind turbine Energy Sci. Eng. 7 6 2373 2382
  39. Balduzzi F. Bianchini A. Maleci R. Ferrara G. 2016 Critical issues in the CFD simulation for Darrieus wind turbines Renew. Energy 85 419 435
  40. Bianchini A. Balduzzi F. Ferrara G. Ferrari L. 2016 Virtual incidence effect on rotating airfoils in Darrieus wind turbines Energy Convers. Manag. 111 329 338
  41. Rezaeiha A. Kalkaman I. Blocken B. 2017 CFD simulation of a vertical axis wind turbine operating at moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment Renewable Energy 107 373 385
  42. Son S. Singh P. Choi Y. 2013 Influence of guide vane shape on the performance and internal flow of a cross-flow wind turbine J. Korean Soc. Mar. Environ. Energy 32 163 169
  43. Heragy M. Kono T. Kiwata T. 2022 Investigating the effects of wind concentrator on power performance improvement of crossflow wind turbine Energy Convers. Manag. 255 163 169
  44. Matias I. Danao L. Abuan B. 2021 Numerical Investigation on the Effects of Varying the Arc length o a Windshield on the Performance of a Highway Installed Banki Wind Turbine 6 8

Issue

IOP Conference Series: Earth and Environmental Science, vol. 1380, 2024, , https://doi.org/10.1088/1755-1315/1380/1/012001

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus