Autors: . Title: Experimental Benchmarking of Existing Offline Parameter Estimation Methods for Induction Motor Vector Control Keywords: electrical parameters, filed experiments, induction motor, vector controlAbstract: Induction motors dominate industrial applications due to their unwavering reliability. However, optimal vector control, critical for maximizing dynamic performance, hinges on accurate parameter estimation. This control strategy necessitates precise knowledge of the motor’s parameters, obtainable through experimentation or calculation based on its design specifications. Numerous methods, ranging from traditional to computational, have been proposed by various researchers, often relying on specific assumptions that might compromise the performance of modern motor control techniques. This paper meticulously reviews the most frequently utilized methods and presents experimental results from a single motor. We rigorously compare these results against established benchmark methods, including IEEE Standard 112-2017, and subsequently identify the superior approach, boasting a maximum error of only 6.5% compared to 19.65% for competing methods. Our study investigates the parameter estimation of induction motor. The methodology primarily utilizes RMS values for measurement tasks. Moreover, the impact of harmonics, particularly when an induction motor is supplied by an inverter is briefly addressed. The pioneering contribution of this work lies in pinpointing a more accurate parameter estimation method for enhanced vector control performance. These findings pave the way for exceptional vector control, particularly at lower speeds, ultimately elevating both vector control and drive performance. References - Fitzgerald A.E. Kingsley C. Umans S.D. Electrical Machinery 6th ed. McGraw-Hill New York, NY, USA 2017
- Harakuni B. Divatar B. Gurram N. Sheth S. Khaded R. Pattar N. Parameter Estimation and Vector Control of Induction Motor Using Sciamble Workbench Proceedings of the IEEE 7th International Conference for Convergence in Technology (I2CT) Pune, India 7–9 April 2022 1 6 10.1109/I2CT54291.2022.9824245
- Dash S. Chakravarty S. Giri N.C. Ghugar U. Fotis G. Performance Assessment of Different Sustainable Energy Systems Using Multiple-Criteria Decision-Making Model and Self-Organizing Maps Technologies 2024 12 42 10.3390/technologies12030042
- Chunyang S. Qinghui W. Tao S. Haixia W. Induction Motor Torque Closed-Loop Vector Control System Based on Flux Observation and Harmonic Current Suppression Control Eng. Pract. 2024 142 105755 10.1016/j.conengprac.2023.105755
- Shahin A. Elbuluk M.E. Toliyat H.A. Hybrid Neural Network and Grey Wolf Optimization for Online Induction motor parameter estimation IEEE Trans. Energy Convers. 2021 36 1031 1041
- Chen W. He J. Chen J. Sun Y. Adaptive Observer-Based Induction Motor Parameter Estimation Under Time-Varying Disturbances IEEE Trans. Ind. Electron. 2021 68 76 85
- Li L. Li C. Li Y. Wang L. A Novel Online Parameter Identification Algorithm for Induction Motors Based on the Improved Differential Evolution and Multiple Adaptive Kalman Filter IEEE Access 2020 8 21286 21297
- Rajput S. Bender E. Averbukh M. Simplified Algorithm for Assessment Equivalent Circuit Parameters of Induction Motors IET Electr. Power Appl. 2020 14 426 432 10.1049/iet-epa.2019.0822
- Abdelwanis M.I. Sehiemy R.A. Hamida M.A. Hybrid Optimization Algorithm for Parameter Estimation of Poly-phase Induction Motors with Experimental Verification Energy AI 2021 5 100083 10.1016/j.egyai.2021.100083
- Ouambo S.A.T. Boum A.T. Imano A.M. States and Parameters Estimation for Induction Motors Based on a New Adaptive Moving Horizon Estimation J. Electr. Comput. Eng. 2022 2022 8687025 10.1155/2022/8687025
- Amaral F.V. Baccarini J.M.R. Coelho F.C.R. Baccarini L.M.R. A High Precision Method for Induction Machine Parameters Estimation from Manufacturer Data IEEE Trans. Energy Convers. 2020 36 1226 1233 10.1109/TEC.2020.3032320
- Mahesh P. Sabha R.A. Rajeev K.A. An Improved Sliding Mode Observer for Parameter Estimation in Induction Motor Drive with Optimised Gains Aust. J. Electr. Electron. Eng. 2023 20 235 250 10.1080/1448837X.2023.2174110
- Yoo J. Lee J. Sul S. Baloch N.A. Stator Resistance Estimation Using DC Injection with Reduced Torque Ripple in Induction Motor Sensorless Drives IEEE Trans. Ind. Appl. 2020 56 3744 3754 10.1109/TIA.2020.2984189
- Vukasinovic J. Štatkic S. Milovanovic M. Arsic N. Perovic B. Combined method for the cage induction motor parameters estimation using two-stage PSO algorithm Electr. Eng. 2023 105 2703 2714 10.1007/s00202-023-01849-9
- Danin Z. Sharma A. Averbukh M. Meher A. Improved Moth Flame Optimization Approach for Parameter Estimation of Induction Motor Energies 2022 15 8834 10.3390/en15238834
- Rodriguez-Abreo O. Rodriguez-Resendiz J. Alvarez-Alvarado J.M. Garcia-Cerezo A. Metaheuristic Parameter Identification of Motors Using Dynamic Response Relations Sensors 2022 22 4050 10.3390/s22114050 35684670
- Stinga F. Selisteanu D. Robust Estimation-Based Control Strategies for Induction Motors Complexity 2020 2020 9235701 10.1155/2020/9235701
- Diab A.A.Z. Elsawy M.A. Denis K.A. Alkhalaf S. Ali Z.M. Artificial Neural Based Speed and Flux Estimators for Induction Machine Drives with Matlab/Simulink Mathematics 2022 10 1348 10.3390/math10081348
- Rizk-Allah R.M. Abdelwanis M.I. El-Sehiemy R.A. Abd-Elrazek A.S. An Interior Search Algorithm Based on Chaotic and Crossover Strategies for Parameter Extraction of Polyphase Induction Machines Neural Comput. Appl. 2022 35 6647 6664 10.1007/s00521-022-08055-x
- Sengamalai U. Anbazhagan G. Thentral T.M.T. Vishnuram P. Khurshaid T. Kamel S. Three Phase Induction Motor Drive: A Systematic Review on Dynamic Modeling, Parameter Estimation, and Control Schemes Energies 2022 15 8260 10.3390/en15218260
- Giri N.C. Mohanty R.C. Turmeric crop farming potential under Agrivoltaic system over open field practice in Odisha, India Environ. Dev. Sustain. 2024 1 9 10.1007/s10668-024-05086-3
- Choudhary A. Mian T. Fatima S. Panigrahi B.K. Nature-Inspired Artificial Bee Colony-Based Hyperparameter Optimization of CNN for Anomaly Detection in Induction Motor Expert Syst. 2024 41 e13407 10.1111/exsy.13407
- Jain P. Singh B. Parameter Estimation of Induction Motor for Vector Control: A Review IEEE Trans. Energy Convers. 2018 33 268 278
- Aziz A.G.M.A. Abdelaziz A.Y. Ali Z.M. Diab A.A.Z. A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques Energies 2023 16 2854 10.3390/en16062854
- IEEE Standard 112-2017 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators IEEE New York, NY, USA 2017
- Chapman S.J. Electrical Machinery and Power System Fundamentals 5th ed. McGraw-Hill New York, NY USA 2012
- Mashar A. Determination of Three-Phase Induction Motor Equivalent Circuit Parameters Experimentally IEEE Trans. Ind. Appl. 2013 49 2531 2539
- Natarajan R. Misra V. Parameter Estimation of Induction Motors Using a Spreadsheet Program on a Personal Computer Electr. Power Syst. Res. 1989 16 157 164 10.1016/0378-7796(89)90008-4
- Haque M. Determination of NEMA Design Induction Motor Parameters from Manufacturer Data IEEE Trans. Energy Convers. 2008 23 997 1004 10.1109/TEC.2008.2001451
- Al-Jufout S.A. Al-Rousan W.H. Wang C. Optimization of Induction Motor Equivalent Circuit Parameter Estimation Based on Manufacturer’s Data Energies 2018 11 1792 10.3390/en11071792
- Salomon C. Sant’Ana W. Lambert-Torres G. Borges da Silva L. Bonaldi E. de Oliveira L. Comparison Among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance Energies 2018 11 691 10.3390/en11040691
- Ghosh S. MATLAB Simulation of Circle Diagram in Three Phase Induction Motor IETE J. Educ. 2022 63 63 77 10.1080/09747338.2022.2044395
- Agrawal K.C. Electrical Power Engineering Reference & Applications Handbook 6th ed. Elsevier Amsterdam, The Netherlands 2020
- Hu J. Jia M. Xiao F. Fu C. Zheng L. Motor Vector Control Based on Speed-Torque-Current Map Appl. Sci. 2020 10 78 10.3390/app10010078
Issue
| Technologies, vol. 12, 2024, , https://doi.org/10.3390/technologies12080123 |
|