Autors: Stavrev, S., Ginchev, D.
Title: Reinforcement Learning Techniques in Optimizing Energy Systems
Keywords: energy systems; reinforcement learning; optimization; deep

Abstract: Reinforcement learning (RL) techniques have emerged as powerful tools for optimizing energy systems, offering the potential to enhance efficiency, reliability, and sustainability. This review paper provides a comprehensive examination of the applications of RL in the field of energy system optimization, spanning various domains such as energy management, grid control, and renewable energy integration. Beginning with an overview of RL fundamentals, the paper explores recent advancements in RL algorithms and their adaptation to address the unique challenges of energy system optimization. Case studies and real-world applications demonstrate the efficacy of RL-based approaches in improving energy efficiency, reducing costs, and mitigating environmental impacts. Furthermore, the paper discusses future directions and challenges, including scalability, interpretability, and integration with domain knowledge. By synthesizing the latest research findings and identifying key areas for further i

References

    Issue

    Electronics, vol. 13, issue 9, 2024, Switzerland, MDPI, https://doi.org/10.3390/electronics13081459

    Цитирания (Citation/s):
    1. Wang, S., Luo, W., Yin, S., (...), Zhu, Y., Li, S. Interpretable State Estimation in Power Systems Based on the Kolmogorov–Arnold Networks, Electronics (Switzerland) 14(2),320 - 2025 - в издания, индексирани в Scopus
    2. Three-Dimensional Fuzzy Reinforcement Learning Modeling for Nonlinear Distributed Parameter Systems, Zhang, X., Yan, R., Zhou, G., Wang, L., Wang, B., Electronics (Switzerland) 13(21),4217 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    3. Zangato, T., Osmani, A., Alizadeh, P., Enhancing Decision-Making in Energy Management Systems Through Action-Independent Dynamics Learning, Frontiers in Artificial Intelligence and Applications, 392, pp. 4571-4578 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    4. Suanpang, P., Jamjuntr, P., Enhanced Decision Making in Smart Grid Management by Optimizing Adaptive Multi-Agent Reinforcement Learning with Vehicle-to-Grid Systems, Decision Making: Applications in Management and Engineering, 7(1), pp. 494-530 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    5. Vysotska, V., Lytvyn, V., Vladov, S., Vasylenko, V., Kryshan, O., The optimal controller parametric synthesis using variational calculus for a dynamic system general mathematical model, CEUR Workshop Proceedings, 3896, pp. 217-234 - 2024 - в издания, индексирани в Scopus и/или Web of Science
    6. Xie H., Song G., Shi Z., Peng L., Feng D., Song X., Stable energy management for highway electric vehicle charging based on reinforcement learning, 2025, Applied Energy, issue 0, vol. 389, DOI 10.1016/j.apenergy.2025.125541, issn 03062619 - 2025 - в издания, индексирани в Scopus
    7. Rajaperumal T.A., Columbus C.C., Transforming the electrical grid: the role of AI in advancing smart, sustainable, and secure energy systems, 2025, Energy Informatics, issue 1, vol. 8, DOI 10.1186/s42162-024-00461-w, eissn 25208942 - 2025 - в издания, индексирани в Scopus
    8. Wei Y., Fan J., Meng Q., Debnath K.B., Yang Y., Liu J., Lei Y., EOLD: A reinforcement learning-based energy-optimised load disaggregation framework for demand-side energy management, 2025, Renewable Energy, issue 0, vol. 252, DOI 10.1016/j.renene.2025.123536, issn 09601481, eissn 18790682 - 2025 - в издания, индексирани в Scopus
    9. Ndaba S., Abubakar A.M., Ferhoune I., Bilal M.T., Sarkinbaka Z.M., Case studies in machine learning for design optimization, 2025, Design Optimization Using Artificial Intelligence, issue 0, pp. 31-46, DOI 10.1201/9781003589716-3 - 2025 - в издания, индексирани в Scopus
    10. Song G., Xie H., Zhang J., Fu H., Shi Z., Feng D., Song X., Zhang H., Long-term efficient energy management for multi-station collaborative electric vehicle charging: A transformer-based multi-agent reinforcement learning approach, 2025, Applied Energy, issue 0, vol. 397, DOI 10.1016/j.apenergy.2025.126315, issn 03062619 - 2025 - в издания, индексирани в Scopus
    11. Devikala S., Menaka D., Kumar A.L., Ravichandran V., Optimized Medical Data Transmission Using OFDM VLC and Reinforcement Learning in Remote Health Monitoring, 2025, Journal of Machine and Computing, issue 3, vol. 5, pp. 1915-1930, DOI 10.53759/7669/jmc202505150, issn 27891801, eissn 27887669 - 2025 - в издания, индексирани в Scopus
    12. Tonieva K., Andriichuk I., Ivanov S., Semchuk Z., Lopatka S., The impact of artificial intelligence on the strategic planning of economic development of countries, 2025, Periodicals of Engineering and Natural Sciences, issue 2, vol. 13, pp. 489-502, DOI 10.21533/pen.v13.i2.402, eissn 23034521 - 2025 - в издания, индексирани в Scopus
    13. Tamilarasan S., Wang C.-K., Kuan Y.-D., Shih Y.-C., Stachiv I., Machine learning as a catalyst for PEMFC optimization: A comprehensive review from flow fields to system integration with a multiscale perspective on research and applications, 2026, Renewable and Sustainable Energy Reviews, issue 0, vol. 226, DOI 10.1016/j.rser.2025.116274, issn 13640321, eissn 18790690 - 2025 - в издания, индексирани в Scopus
    14. Bajrami E., Kulakov A., Zdravevski E., Lameski P., A comparative analysis of PPO and SAC algorithms for energy optimization with country-level energy consumption insights, 2025, IFAC Journal of Systems and Control, issue 0, vol. 34, DOI 10.1016/j.ifacsc.2025.100344, eissn 24686018 - 2025 - в издания, индексирани в Scopus
    15. Zhu X., Zhao Y., Fang W., APPLICATION RESEARCH ON DYNAMIC REAL-TIME OPTIMIZATION BASED ON REINFORCEMENT LEARNING TECHNOLOGY, 2025, Petroleum Processing and Petrochemicals, issue 10, vol. 56, pp. 94-100, issn 10052399 - 2025 - в издания, индексирани в Scopus
    16. Altimania M.R.M., Alatawi K.S.S., Madaminov S., Abduvokhidov A., Umarov A., Yadav B.K., Multiobjective optimization framework for renewable energy integration in smart grids with enhanced stability and resilience using reinforcement learning and distributed control systems, 2025, International Journal of Low Carbon Technologies, issue 0, vol. 20, pp. 1749-1776, DOI 10.1093/ijlct/ctaf114, issn 17481317, eissn 17481325 - 2025 - в издания, индексирани в Scopus
    17. Ahmed F., Mohammed N., Mewada H., Aziz M.S.A., Khor C.Y., An experimental evaluation, performance analysis, and improvement of water desalination system using optimized machine learning, 2025, Process Integration and Optimization for Sustainability, issue 0, DOI 10.1007/s41660-025-00595-8, issn 25094238, eissn 25094246 - 2025 - в издания, индексирани в Scopus
    18. Naji K.K., Gunduz M., Mohamed A., Alomari A., Generative AI for Sustainable Project Management in the Built Environment: Trends, Challenges, and Future Directions, 2025, Sustainability Switzerland, issue 20, vol. 17, DOI 10.3390/su17209063, eissn 20711050 - 2025 - в издания, индексирани в Scopus
    19. Lee H.P., Integrating distributed energy resources in power distribution systems: A comprehensive review of impacts, challenges, and opportunities from a distribution system operator's perspective, 2026, Applied Energy, issue 0, vol. 403, DOI 10.1016/j.apenergy.2025.127052, issn 03062619 - 2025 - в издания, индексирани в Scopus
    20. Amir M., Saifi I.A., Haque A., Implementation of Machine Learning for Power Electronics Application Using PYTHON, 2025, Artificial Intelligence for Power Electronics, issue 0, pp. 301-328, DOI 10.1002/9781394270804.ch10 - 2025 - в издания, индексирани в Scopus
    21. Omar M., Karim S.A.A., AI-Driven Strategies: An Overview Towards Inclusive and Sustainable Urbanization, 2025, AI Driven Strategies for Inclusive and Sustainable Urbanization, issue 0, pp. 1-19, DOI 10.1201/9781003630371-1 - 2025 - в издания, индексирани в Scopus
    22. Marimuthu M., Kadiri P., Ganapathy S., Kumar Pandiyan V., Energy efficient optimization of renewable energy dispatch using blockchain-verified deep reinforcement learning controllers, 2025, Sustainable Computing Informatics and Systems, issue 0, vol. 48, DOI 10.1016/j.suscom.2025.101256, issn 22105379 - 2025 - в издания, индексирани в Scopus
    23. Sargolzaei A., Javidi-Niroumand F., A Reinforcement Learning-Based Attack Generator for Testing the Security of Connected and Autonomous Vehicles, 2025, IEEE Transactions on Intelligent Transportation Systems, issue 0, DOI 10.1109/TITS.2025.3634061, issn 15249050, eissn 15580016 - 2025 - в издания, индексирани в Scopus
    24. Xiao S., Wang Z., Li J., Noeller C., Jiang J., Wang J., Implementation of Human-AI Interaction in Reinforcement Learning: Literature Review and Case Studies, 2026, Computers Materials and Continua, issue 2, vol. 86, DOI 10.32604/cmc.2025.072146, issn 15462218, eissn 15462226 - 2025 - в издания, индексирани в Scopus
    25. Rehman U.U., The future role of artificial intelligence in energy management systems for smart cities: A systematic literature review of trends, gaps, and future direction, 2026, Sustainable Computing Informatics and Systems, issue 0, vol. 49, DOI 10.1016/j.suscom.2025.101249, issn 22105379 - 2025 - в издания, индексирани в Scopus
    26. Cuce P.M., Alvur E., Cuce E., Soudagar M.E.M., Bouabidi A., Guo S., Cao J., Khalid W., Alshahrani S., Alqahtani A.A., Mostafa N.A., Solar thermal systems and AI: Past, present, and future, 2025, Journal of Thermal Analysis and Calorimetry, issue 0, DOI 10.1007/s10973-025-14910-5, issn 13886150, eissn 15882926 - 2025 - в издания, индексирани в Scopus
    27. Xiang H., Huang K., Liu W., Empowering Green Innovation: The Impact of Artificial Intelligence Policy on Enterprises in China, 2025, Proceedings of 2025 International Conference on Economic Management and Big Data Application Icembda 2025, issue 0, pp. 172-176, DOI 10.1145/3770177.3770204 - 2025 - в издания, индексирани в Scopus

    Вид: статия в списание, публикация в издание с импакт фактор, индексирана в Scopus