Autors: Petrov, P. P., Kralov, I. M.
Title: Modelling and Feedback Control for Reversing a Nonholonomic Mobile Robot Platoon
Keywords: mobile robot, reverse platooning, mathematical model

Abstract: This paper addresses the control problem of a platoon of nonholonomic mobile robots in the case of backward motion of the leading robot. By using a virtual non-static with respect to the lead robot reference frame as a target, a kinematic model of the robot platoon in error coordinates is developed. A nonlinear feedback controller based on the entire platoon model is designed by means of high-gain control. Asymptotic stability property of the closed-loop system is established using Lyapunov theory. For backward motion of the leading robot along a circular path, at steady-state, the two-robot platoon should travel concentric arcs of same radii with prescribed inter-robot spacing. The performance of the proposed tracking controller is illustrated through numerical simulations.

References

  1. Alam M., P. Georgakis (2022) The state of the art of cooperative and connected autonomous vehicles from the future mobility management perspective: A review, Future Transportation, 6, 589–604, DOI: 10.3390/futuretransp2030032.
  2. Tajdeh Y. (2022) Army sees progress with the leader-follower vehicle technology, National Defense, Available at: https://www.nationaldefensemagazine.org/.
  3. Parent M., P. Petrov, C. Boussard (2010) Development and experimentation of an autonomous vehicle platoon for urban environments, Proc. IASTED Int. Conf. Robotics and Applications, DOI: 10.2316/P.2010.706-079.
  4. Sedghi L., J. John, D. Pesch (2022) Formation control of automated guided vehicles in the presence of packet loss, Sensors, 22, 3552, DOI: 10.3390/s22093552.
  5. Kelek M., T. Ozer, U. Fidan, Y. Oguz (2023) Simulation and real-time application of the load cell-based Segway, C. R. Acad. Bulg. Sci., 76(1), 75–83, DOI:10.7546/CRABS.2023.01.08.
  6. Petrov P., I. Kralov (2021) Adaptive formation control of nonholonomic mobile robots for autonomous following in front of the leader, C. R. Acad. Bulg. Sci., 74(9), 1370–1379, DOI: 10.7546/CRABS.2020.09.12.
  7. Bayuwindra A., E. Lefeber, J. Ploeg, H. Nijmeijer (2020) Extended lookahead tracking controller with orientation error observer for vehicle platooning, IEEE Trans. Intel. Trans. Systems, 21(11), 4808–4821, DOI: 10.1109/TITS.2019.2947348.
  8. Sonugur G., B. Gokce (2022) A new gradient-based feature extraction method for real-time detection of moving objects using stereo cameras, C. R. Acad. Bulg. Sci., 75(3), 414–421, DOI: https://doi.org/10.7546/CRABS.2022.03.11.
  9. Petrov P., F. Nashashibi (2015) Automatic vehicle perpendicular parking design using saturated control, IEEE J. Conf. Appl. El. Eng. Comp. Technologies (AEECT 2015), DOI: 10.1109/AEECT.2015.7360566.
  10. Vilca J., L. Adouane, Y. Mezouar (2015) A novel safe and flexible control strategy based on target reaching for the navigation of urban vehicles, Rob. Autonom. Systems, 70, 215–226, DOI: https://doi.org/10.1016/j.robot.2015.01.008.
  11. Petrov P. (2008) A mathematical model for control of an autonomous vehicle convoy, WSEAS Trans. Syst. Control, 9(3), 835–848.
  12. Payne W. (2020) Robotic Research demonstrates reverse platooning, Available at: https://www.iotm2mcouncil.org/iot-library/news/ connected-transportation-news/robotic-research-demonstrates-reverseplatooning/.
  13. Nahavandi S., S. Mohamed (2022) Autonomous convoying: A Survey on current research and development, IEEE Access, 10, 13663–13683, DOI: ACCESS.2022.3147251.
  14. Sepulchre R., M. Jankovic, P. Kokotovic (1997) Constructive nonlinear control, Springer-Verlag London Ltd, DOI: https://doi.org/10.1007/978-1-4471- 0967-9.

Issue

C. R. Acad. Bulg. Sci., vol. 9, issue 76, pp. 1402-1412, 2023, Bulgaria, omptes Rendus de L'Academie Bulgare des Sciences, DOI:10.7546/CRABS.2023.09.11

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science