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PA3SMIT PET'YJIATOP HA CMHT 3A HEJTHHEITHI OBEKTH
CYHCTO 3AKbCHEHHE HA ITPHHITHITA HA ITAPAJIE/THO
PA3IIPEJE/IEHA KOMIIEHCAITITA

CHexkaHa FlopaaHoBa

Pesrome: Ilpedaoocen e menioo za cunmes na pazmum Cyum npeduxmop (PCII) 3a
nenneer obexm cve saxvenenue. PCI e uzepaden na baza na Takagi-Sugeno-Kang
(TSK) paszmun amtoden Ha ob6exmd, CbeHldGeH onl TOKATHI TUHElHI 0Dermii ¢be 3HA-
yumenHu wucmu 3axveHents. Hnonzea ce npurnyunvm va Hlapaneano Pasnpedeiena
Komnencayus (IIPK) u noxkatnume mineilHu pezyviamopu ce Cu#mesupan Kamo xia-
cunecku CyMum npeouxmopu 3a CLomeeniHume J0KATHI 00eKn 3a KOMNeHCUpane Ha
3akveHenuama M. Hzeeoenu ca veaosus Ha Jlanvnoe 3a ananuz Ha yemoiiugocmnia
Ha 2nobarHama pasmuma cucmeMda Kano JuHetiHu mampuunu Hepaserncmed. Cunnie-
supar e PCII 3a ynpaenenue Ha memnepanivpanma 6 aabopaniopHa neuy i 3daigope-
Hama cucmema e U3Cc1e06aHda upe3 CUMYIAUA.

Karouosu oymu: 3axvcrerue, HellHeeH 00exm, NAPAleTHo pasnpedeieHd KOMNeHca-
yus, pazyum CAanim npeouxnmaop, CuMyiayia, Vemoiiueoc

FUZZY SMITH PREDICTOR FOR NONLINEAR PLANTS WITH TIME DE-
LAY BASED ON PARALLEL DISTRIBUTED COMPENSATION

Snejana Yordanova

Abstract: 4 method for the design of fuzzv Smith predictor (FSP) for a nonlinear
plant with time delav is developed. The FSP is based on Takagi-Sugeno-Kang (TSK)
plant model, comprised of linear local plants with significant time delays. The princi-
ple of Parallel Distributed Compensation (PDC) is emploved and the local linear
controllers are designed as classical Smith predictors for the corresponding local lin-
ear plants aiming at compensation of their time delays. Lyapunov conditions for anal-
vsis of the global fuzzy system stability are suggested in the form of linear matrix ine-
qualities. 4 FSP is designed for the control of the temperature in a laboratory fuirnace
and the closed loop system is investigated via simulations.

Keywords: fuzzy Smith predictor, nonlinear plant, parallel distributed compensation,
simulation, stability, time delay compensation

1. INTRODUCTION AND PRELIMINARY INVESTIGATIONS

In the development of fuzzy control there have emerged two main approaches. The
first one is the model-free expert Mamdani controller [1-4]. The recent and the more

© 2012 Publishing House of Technical University of Sofia 15
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advanced is the model-based approach, built on dynamic fuzzy Takagi-Sugeno-Kang
(TSK) plant model [5-7]. The TSK plant model allows modelling of any nonlinear
plant by local linear plant models in the conclusions of the fuzzy rules and blending
the qualified conclusions of the activated rules by the inference mechanism. Accord-
ing to the Parallel Distributed Compensation (PDC) the fuzzy logic controller (FLC)
and the TSK plant model have fuzzy rules with common premises. Each conclusion is
a local linear controller - usually a state feedback, designed to compensate the corre-
sponding fuzzy rule in the plant [4-10]. Thus the PDC controllers have only a few
rules — one for each plant model. The PDC-TSK approach is gaining popularity for
being systematic in considering system stability, robustness and performance and also
for the use of the well-developed linear control technique for the design of the local
controllers.

The PDC fuzzy logic controller design is decomposed into local linear controllers de-
sign from the requirement to ensure local linear systems stability and robustness and a
global fuzzy nonlinear system stability analysis, employing Lyapunov stability direct
method and Linear Matrix [nequalities (LMIs) numerical technique [4-8, 10] for solv-
ing the Lyapunov stability conditions. The local controllers design and the Lyapunov
global system stability problem may become computationally hard and even insolva-
ble for plants with immeasurable state variables, time delay and model uncertainties.
Most industrial processes are inertial complex nonlinear time-varying plants with sig-
nificant time delay [4, 8-12]. Fortunately the nonlinear plant in most cases can be rep-
resented by a TSK plant model of finite number of local linear models with time de-
lay, each for a given operation sub-domain. This makes the application of the ad-
vanced and simple fuzzy PDC-TSK approach suitable for achieving of the high per-
formance demands to the control of such plants as it accounts for the time delay, the
nonlinearity, the model uncertainty and complexity [4-10]. The significant time delay
and the nonlinearity of both plant and controller make system stability and robustness
essential for the practical feasibility of the designed control system [4-8, 10].
Different new developments, based on linear control analogies, have been proposed to
the classical PDC-TSK approach [5-7] in case of local plants with immeasurable state
space variables, time delay and model uncertainty. Dynamic PI local controllers are
designed in [4, 8-9]. A fuzzy internal model controller (FIMC) is suggested in [10] to
compensate plant model uncertainty.

The aim of the present investigation is to develop a method for the design of a fuzzy
Smith predictor (FSP) for a nonlinear plant with local low order linear plant models
with relatively significant time delays. The FSP is PDC-TSK based with dynamic lo-
cal controllers, which are derived on the principle of linear Smith predictor to ensure
local linear systems stability and to improve their performance by compensating the
corresponding local plant time delay.

The time delay is due to modelling error, distribution in space of the parameters of the
plant, high order or multi-capacitance of the plant, transport delay, inertia caused by
finite rate of reactions, restricted flow velocities, time required to overcome re-
sistance, etc. The pure time delay reflects the total effect of transient, transport and
approximation delays. Plants with time delay are difficult to control since the control

16



action is not felt right away. Stability constraints should be carefully observed as well.
In case of high relative time delay t©/7T >0.5 with respect to plant model time con-
stant 7, special measures for compensation of the time delay are recommended in or-
der to improve system stability and performance [11, 12]. The Smith predictor is one
of the most popular.

The block diagram of a control system with a Smith predictor is shown in Fig.1. A

¥ represents the plant. The

plant model with transfer function with time delay P, (s)e”
Smith predictor R(s) consists of a conventional controller C(s), enclosed by a feed-
back Cg, (s) , and has the following transfer function:

R(s) = C(s) _

1+ C(s)Cqy (s)

The necessary feedback Cpg, (s), derived to ensure no time delay in the characteristic
equation of the closed loop system, is:

Cpy () = By (5)[1-e~ )
As seen from (2), Cq,(s) depends entirely on the plant model. Substituting (2) in (1)
results in:

(1)

o) C(s)
1+C(s)P, (s)[1—e™ 7] .
The stability of the closed loop system is not influenced by the time delay t as it is not

present in the denumerator of the transfer function of the closed loop system with the
Smith predictor:

3)

_ R(s)P,(s)e ™ _ C(s)P,(s)e ™ _ C(s)P,(s)e ™
1+R(5)P,(s)e ™ 1+C(s)Cq(s) +C(s)B (s)e ™ 1+ C(s)B,(s)

Smith \¥

Yr e

Fig.1. Block diagram of a closed loop system with Smith predictor R(s)

-

This allows for B, (s) = K
Ts+1

a PI controller C(s)=K,(1+1/T;s) to work with a very

great gain K, without violation of system stability as the open loop system Cf(s).Pq(s)
is of second order and its Nyquist plot never crosses the negative abscise axis — the
system remains stable at high controller’s gain. This ensures high dynamic accuracy,
insensitivity to model uncertainty and good disturbance filtration can be ensured.
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Despite of the advantages of the Smith predictor its industrial application is still not
widely spread due to the difficulties in the completion of the necessary feedback
Cq, (s) and the high demand for precise plant model parameters. System performance

may be greatly deteriorated in case of deflection between plant and model parameters
caused by model uncertainties, changes of plant parameters with time or with the shift
of the operation point along nonlinear characteristics, etc.

In order to make the Smith predictor more robust and to extend its application to non-
linear plants a method for the design of FSP on PDC-TSK scheme is suggested in the
next chapter 2. In chapter 3 a FSP for the air temperature in a laboratory furnace is
developed. Simulation investigations of the system with the FSP are described in
chapter 4. The final chapter 5 contains analysis of results and conclusion and outlines
the future work.

2. METHOD FOR THE DESIGN OF FUZZY Smith PREDICTOR
The fuzzy Smith predictor is based on the PDC-TSK scheme. It requires a TSK plant
model, derived from identification for industrial processes with time delay in [4, 8-
10]. Experimentally recorded plant step responses in different operation points are ap-
proximated by Ziegler-Nichols models. Then sub-domains of linearisation are deter-
mined by grouping similar adjacent step responses, to which correspond models with
close parameters. In each sub-domain an average Ziegler-Nichols model

B (s)=K, (T, s+1)Le™* =P,_(s)e™" is computed, which is accepted as the local lin-
ear plant in the corresponding fuzzy rule of the TSK plant model. The sub-domains
are recognized by the plant output y(#) or its reference y,(r). When under closed loop
control, the plant output follows the reference y; and smoothly passes through all sub-
domains from the current to the final. This causes the model parameters K, 7; and T
to vary with the operation point or the sub-domain.

Each local linear controller is designed as a Smith predictor to compensate one local
linear plant and its relatively great time delay. Thus each local closed loop system has
the block diagram, depicted in Fig.1. After an equivalent transformation, shown in
Fig.2, the resemblance with a system with Internal Model Controller (IMC) Q(s) be-

comes obvious [10, 12]. The local IMCs, however, have transfer functions
Oils)=[ P (s) 'L Fi(s). The filter Fi(s) is designed to make proper the transfer function

of the ideal controller O°(s)=[ P, (s) | for precise plant model
. Q(s)
Jr C(s) U> Py(s) e

g
o
«

h
v
=

o

«
lgv]

A

Fig.2. Equivalence of systems with Smith predictor R(s) and internal model controller

O(s)
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P, (s) and no noise and disturbances, and also to ensure no steady state error for step

inputs. The non-minimal phase plant time delay can be omitted in obtaining the in-
verse plant and the result is the following:

0:(5)=| P, (s) '\ Fi(9)= [(T; s+ 1)/ K, 1.0+ 1) 4)

The time constant A of the filter is the only tuning parameter. It is selected to be small
for fast system step response but also high enough to satisfy the system robustness
criterion [4, 10].

In the Smith predictor from Fig.2 with Ci(s) a PI controller is obtained:

0i(s)=Cis). [1+ Gi(s) P, (s) ]
0, () =Ky 1+ 1T ). [1+ K Ky (14+1/Tys) (T s +1) 77 =

:Kpi.{T1 s+1).(7 s +1).17;s.(T; s +1) + K| .Kpi_(THSJr])]—l. 5)

The classical controller Ci(s) in the Smith predictor is tuned to have a great gain K
and employing some empirical tuning method can have T, =7, [11]. Then (5) is
simplified to the following expression:

O, (5) =Ky (T s+ (G s+ K; Kp) 7 =[(T; s + 1)/ K 1AL /(K Ky)ls+17 (6)

From the analogy between (4) for the IMC and (6) for the Smith predictor it can be
established that:

r=T; [(K; Ky, (7)

which for the selected great gain Kj; can turn out to be very small and may not satisfy
robustness criteria.

The transfer function (6) for K, ‘Kpi>1 is that of a PD controller (a time lead element)

o)

1

(s) =Cppy(s) = (/K ).(T; s+1).0s+1) 7" with a gain K,y =1/K; and a differ-
entiating time constant 7y =7; . The maximal value for /=0 and considering (7) is

I /(K ) :Kpi and is high.

. R(s)
Jr ' Q(s) : Po(s)e ™ Y

Po(s)e ™

Fig.3. A system with Smith predictor R(s) based on internal model controller

Os)

A 4
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The derivation of the conclusions in the fuzzy rules in the TSK model of the FSP re-
quires transformation of the system in Fig.2 into the system in Fig.3. Also the fol-
lowing assumptions are accepted:

1) 2; can be neglected as comparatively small with respect to t; - Ai<<t; since

for great K - K, .Kpi>l and hence 2;<7;, on the other hand the Smith predictor is
used when Ti<t;, so Li<T;,<Ti, in this case Fi(s)=1;
2) the time delay can be approximated by the linear term in the Taylor’s series

. -T7s 0 -1
expansion - e T & (/s +1)7.

Under these assumptions the Smith predictor is derived as follows:

R (s) - — i) - —
1-0/(9)B, (s)e " 1= B, ()P, () Fy(s)e "+
Cppy (5) T s+1 ®
= —PDLPT O (). = Cppi (5)-Cpy ()
l—Fi(S)e_TiS it

As seen from (8) the local Smith predictors are comprised of connected in series local
linear controllers PD and PI with gain 1 and integral action time ;. This determines
the suggested structure of the PDC FSP, shown in Fig.4. It consists of two PDC con-
trollers in series — a PD and an incremental PI. The necessary integrator can be re-
ferred to the plant like in [4, 8-10]. The scaling factors normalise the inputs in the
range [-1,1]. For a given maximal expected error magnitude |e.y| - Ke=Kge=1/|emax
and considering that [t/ppmax|=Kjimax-|€max| - Kupp=Kaupp=1/(Kimmax-|€max]) -

PDC
PD PDC |Aup Uy
Incremental
r Y Pl

)

Fig.4. PDC Smith predictor R(s)
The fuzzy rules of the plant and the PDC Smith controller are respectively:
R;: IF y(1) is M;; AND e(?) is Mj; AND é(7) is M3
% (1) = Aigx; (1) + Bigri; (1 —7,) )
v (1) =Cix; (2)
Rii: IF v(¢) is Mi1 AND e(7) is Miz AND é(¢) is Mis
THEN uppy, (t) = —Fpp;x; (1) + Gpp;x, (10a)
or upp; () = Kpgie(t) + Kpq Tgi-(0) .
R;;: IF 3(7) is M;; AND wpp(7) is My AND zippy (7) is M5
THEN uipy; (1) = Fpyxpp; (1) (10b)
or tipy (1) = (1/ty)upp (t) + ttpp (1),

THEN.
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where: Mj; are linguistic values, defined as membership function (MF) of fuzzy sets;
x(r)eR" is the state vector; u(r)eR™ is the input control vector; v(7) eR" is the output
vector; e(t) =y, — v(t) is the error in the closed loop system for constant reference y;

e 1
(e(t) ==v(1)): x (r}z[\'_‘gl(g);_‘i'%]; Xp {\ X = } Ao = [0 T }1 By :{K O;T }:

_ . L s e . . Xppig(t) =tpp; 0) |,
C =01 0 Fepi =Ky KTyl Gepi =K 015 xepil) = L’Pnlz(f] sppin® |

The state vector x;(7) can be extended with xpp(r) to yield:

x;,(0) = ()
) — x5 (1) =x;, (1)
(f) Xig (f) :HPD(f) ’
Xi4 () = x;3(0)

As a result the defined vectors and matrices will be converted into blocks from the

B
new block vectors or matrices — for instance A, {41%2 "2}, By = [Oldm}
Ozcz  Ooxp 2x1

e _ | *roqxl -
Cie:[qlxz lez], Xr _{OZXJ =y Fpyl. Gi=1Gpp; 0]

xl
Then the global system stability can be proved by applying the derived in [4, 8] Lya-
punov sufficient conditions. The system (9), (10a), (10b) is quadratically stable if
there exist matrices P>0, and (>0 such that the following matrix inequalities are sat-
isfied for 7, j=1...r, j>i:

T T
P£ +4 P+PRFEOE B P+0<0

(11
PO5(A, +45) +[05(4, +45,) | P++0.5(B, FQ—IFTij +BFOE! Bjd )+0<0

3. DESIGN OF FUZZY Smith PREDICTOR FOR AIR TEMPERATURE
CONTROL

The developed method for the design of FSP is applied for the control of the air tem-
perature in a laboratory furnace [10]. The experimental study showed three linearisa-
tion sub-domains, represented by Ziegler-Nichols plant models with average for the
sub-domain parameters, given in Table 1.

The FSP is designed using MATLAB™ [13]. Each of the two PDC has three fuzzy
rules according to (10a) and (10b) respectively — one for each linear sub-domain. The
two PDC rule bases are identical. The conclusion is a different deterministic function
of the inputs in each rule and different for the PD and the PI PDCs and depends only
on the local plant parameters. The inputs are [v; e ¢] for the PD controller and [v; 2pp
tippy | — for the PI controller. The temperature range is [0+80] °C and the maximal ex-
pected error |emax/=10°C. The control action is bounded in the range [0+2] V. The
fuzzy units inputs are normalized - e, é, upp and zipp in the range [-1+1] °C, and y; -
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in the range [0+1] °C. The denormalisation factor at the output of the fuzzy unit,
which serves also as an integrator gain, is fine tuned by simulation experimentations
to Kqup1 =1.2. The derivatives é and #pp, are obtained at the output of a noise resistive
first order differentiators s/(s+1). The MFs for y; shown in Fig.5 with “H” - high,
“Nef” - normal and “L” - low, are designed to map the relative location of the sub-
domains. Only they matter in distinguishing the linearisation sub-domains.

Table 1. Local plants parameters I, }ref /;
Plant model K; T 1| \
parameters °C/V. min  min 0 / X ]
Sub-domain 1 66 8 14 _
Sub-domain 2 10 6 10 >\/ \
Sub-domain3 50 9 8 == f

0 61 02 03 04 05 05 07 D& 03 1
input variakle "Tref"

Fig.5. Membership functions for y(7)

4. SIMULATION INVESTIGATIONS OF THE FUZZY SMITH PREDICTOR
CLOSED LOOP SYSTEM

The closed loop system with the designed PDC-Smith controller is studied by simula-
tion in Simulink of MATLAB™ [13]. Its performance is assessed in comparison to
several control systems with:

- PDC-PI controller, designed according to [8];

- PDC-FIMC designed in [10] with denormalisation factor of 1.2.
The simulation is carried out with nominal and perturbed plant in order to assess ro-
bustness. The used Simulink TSK nominal and perturbed plant models are developed
in [10] to reproduce the experimental step responses in the different operation points.
The step responses are shown in Fig. 6. The main performance indices - settling time
7, min, overshoot &, % and maximal deviation between

15 Temperdture, °C Dashed line for perturbed plant
PDC-FIMC
Y
10 ‘ e e e L

PDC-Smith controller
; PDC-PI controller | Time, min

0
0 100 200 300 400 500 600
Fig.6. Step responses of systems with PDC controllers - FSP, PI and FIMC
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Table 2. Systems performance for nominal/perturbed plant

System FSP PI FIMC
£, min 300/150 500/300 150/170
G, % 0/0 0/0 0/10
|AY max|, “C 2.5 2 3.5

outputs of systems with nominal and perturbed plants |Ay,,.,|. “C, as a measure for ro-
bustness, are given in Table 2.

5. ANALYSIS OF RESULTS AND CONCLUSION
The main contributions of the present investigation conclude in the following.
A method for the design of Smith predictor for nonlinear plants with significant time
delays is suggested on the basis of the fuzzy PDC-TSK approach.
Lyapunov stability conditions in the form of Linear Matrix Inequalities are proposed
to prove global fuzzy system stability.
The method is applied in the design of a FSP for the air temperature in a laboratory
furnace.
The Simulink-based simulation investigations show that the system with the designed
fuzzy PDC Smith predictor has fast step response, no overshoot and good robustness.
It outperforms the system with PDC-FIMC, designed from robustness requirements,
and demonstrates good compensation of the time delay when compared to the system
with PDC-PI controller.
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