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Abstract. In situ and real time measurements of physical parameters, like viscosity, are frequently
necessary in the environment protection procedures. Unknown mixtures of liquids and solid parti-
cles are frequently met and being potential dangerous (corrosive, radioactive) the problem of safe
transportation and evacuation occurs. The flow parameters depend on a large number of liquid
characteristics varying in wide ranges and a method and devices for estimation for rapid, safe and
inexpensive measurements are required. Viscosity is one of these parameters and the starting from
the idea of improving a vertical falling sphere viscometer, a model of rotational viscometer is pro-
posed. The viscosity is determined when the resultant torque is zero. From the equation of dynamic
equilibrium for rotational motion two values for viscosity are obtained, both probable in equal man-
ner. The concern of the paper is to find a criterion for the selection of the correct solution and also
to explain the meaning of the other root.
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AIMS AND BACKGROUND

Both engineering applications and everyday life is confronted with the problem
of residues amid which the liquid or semisolid ones may create environmental
damages. Slurries can contain particles of different sizes and can be settling
or non-settling fluids. A large number of parameters influence the rheological
behaviour of the slurry: particle size, particle density, volume fraction, particle
drag coefficient, temperature', particle shape, particle interaction, aggregation
structure of suspended particles, the structure of fluid flow?. Even if the liquid is
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non-homogenous it can exhibit Newtonian, non-Newtonian, shear thinning, shear
thickening, viscoplastic behaviours as function of the shear rate. The viscosity
measurements vary for the same liquid mixture over wide ranges of deformation
rates and require different equipments for measurements, according to the shear-
rate domain of the instrument. In engineering processes (transportation, dewater-
ing, wet grinding*) during which the flow parameters of the slurry (coal, bauxite,
cement, limestone, biomass®, etc.) are controlled, one can select the appropriate
viscometer. Engineering fluids frequently experience local conditions that change
their bulk rheological properties and in situ measurement techniques have been
developed®” which necessitate complex and cutting edge equipment. There are also
other situations when a rapid in situ, real-time estimation, using a simple device,
inexpensive, eventually with removable single use parts, is required.

The study of a natural phenomenon assumes recognition, showing it up and
after that, elaboration of a mathematical model. The validation of the model is done
when there is concordance between the results given by the model for a series of
parameters, chosen for well defined running conditions of the phenomenon, and
the actual values of the same parameters. A good correlation between theoretical
and experimental parameters allows the prognosis of the evolution of the consid-
ered phenomenon using the established model, and thus, for cases when there is
an unfavourable evolution, actions can be taken in time. In the situations when the
concordance is not satisfactory, the model requires improvements by considering
more profound aspects of the phenomenon, which in a first state were ignored.

One of the most concluding examples is the wheatear forecast®. Actually, using
it, one can know, for a few days in advance, the meteorological evolution from
a certain region of the globe and the necessary decisions can be made when the
progress is abnormal. The comfort emerging from identifying the exact weather
evolution is the result of tens of years of research work for obtaining the actual
model®'°. The elaboration of the model'describing a certain phenomenon assumes
often intellectual and financial effort without the certitude of a concluding result,
despite all efforts. The plainest example is the earthquake phenomenon. It is obvi-
ous what an achievement would be the possibility of announcing it at least with
tens of minutes before happening.

The models describing natural phenomena are complex due to nonlinear
character of natural world. In numerous occasions, when a model is completed,
the system may follow several alternatives and the duty of scientist is to complete
unambiguous criteria to allow stipulation of univoque direction to be followed by
the phenomenon at a certain time. The multiple variants of the model are caused by
the nonlinear equations which describe the analysed phenomenon. To exemplify the
affirmation, it is considered the case of a body in gravity field, launched vertically
with initial velocity v, and seeking the time when the body reaches the height 4.
The height z of the body at a time ¢ after launching is a quadratic function of time.
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Imposing the condition that the altitude z equals # it is obtained an equation of
second degree with the solutions giving the sought times. Even for this very simple
case, much attention is required. When the solutions are complex due to negative
discriminant, the problem has no solution, the launching velocity being too small
the body does not reach the considered height. When the discriminant is positive,
two real solutions exist, 7, and ¢, corresponding to the moments of reaching the
altitude in ascension and the other one corresponding to the falling body''. From
this simple example it results that all alternatives generated by an adequate model
of the evolution of the phenomenon are equally possible but at the same time with
well specified physical signification.

Another relevant illustration is from spatial kinematics domain, more precise
from spherical motions. It is known that any spherical motion can be described
using an orthogonal matrix. To characterise the spherical motion, the axis of
rotation (namely the versor of the rotation axis) and the rotation angle must be
specified. Knowing these two elements, the expression of the rotation matrix can
be immediately written'2. In the case when the rotation matrix is known, the axis
of rotation must be obtained: McCarthy'? proposes the be sought after among the
vectors that have the image collinear with the initial vector after applying the rota-
tion operator. Thus, an algebra equation of third degree is obtained, its roots being
the eigenvalues of the rotation matrix. McCarthy'* shows that the characteristic
equation always has three roots of unity modulus, a real root and two complex
conjugate roots. The eigenvector corresponding to the real value is the versor of
the axis of rotation. The other two roots should not be ignored since their argument
is the angle of rotation. It is therefore confirmed that the equation obtained trying
to describe a particular aspect of a phenomenon can establish facts about several
aspects of it or even the complete description.

The objective of the present paper is to prove that one can find a new meth-
odology for experimental tests for finding the viscosity, but the significance of the
solutions of the model lead to a dilemma.

EXPERIMENTAL

The device proposed in the present work begins with the test rig used in the fluid
mechanics laboratory for finding the viscosity of a fluid. As principle, the device
consists of a vertical tube, filled with the liquid to be studied of density p, . A ball
of radius 7, made of a material with density p, falls free in the liquid. The method
is based on the balance between the (Archimedes) buoyant force, the hydrody-
namic drag force and the weight of the ball, assuming rectilinear uniform motion.
The precision of the method depends essentially if the estimation of the velocity
is made before or after accomplishment of uniform rectilinear motion of the ball.
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To this purpose, it is useful to find the minimum fall distance required for the ball
to attain the regime of uniform motion. The equation of motion of the ball is:

mj=G-F,~F,, (1)
where G is the weight of the ball:

4n
= Trb3pbg' (2)

F, is the buoyant force exerted by the liquid upon the sphere:

4n
FA= TrLipLg' (3)

F, is the drag force, the hydraulic resistance opposed by the fluid'*:
Fy=12Cyp V2 (ar) )
where C, is the drag coefficient and V' the velocity of the ball with respect to fluid.
In technical literature is presented that the drag coefficient depends on velocity
via the Reynolds number:

p. ¥V (@2r) 5)

Re(w) =

The manner the drag coefficient depends on Reynolds number is an open

matter. There are numerous relations describing this dependency, starting with the
relation of Stokes'* valid for low Reynolds numbers (Re < 1):

C,(Re) =24/Re (6)

and to very intricate formulae that try to interpolate optimum the actual experimen-
tally found variation. Next, for the dependence C,, = C(Re) is used the relation
proposed by Clift and Gauvin'?, for Re <3 x 10

0.42

24
— 0.687
GRS REM e Q)

The dependencies described by equations (6) and (7) are plotted in Fig. 1.
Considering that the Reynolds number is a function of velocity ¥ =y, (equa-
tion (5)), equation (1) becomes a differential nonlinear equation:

my = fy). ®)

Considering a steel ball p, = 7800 kg/m® of radius », = 0.01 m, equation (8)
was numerically integrated via Runge-Kutta'® method, for glycerol (p, = 1260 kg/
m? and u = 0.95 Pa s) and for water (p, = 1000 kg/m’, 1= 0.001 Pa s) the results
being presented in Fig. 2 — the displacement, and in Fig. 3 — the velocity of the ball.
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Fig. 1. Drag coefficient C, versus Reynolds number®

If in glycerol the ball reaches uniform motion after about = 0.5 s, time during
which the ball falls a distance of 0.12 m, in the case of falling in water, the constant
velocity is reached after ~ 1.4 s (Fig. 5) while the ball falls 1.2 m (Fig. 4). It can
be concluded that for less viscous fluids, long tubes are necessary, with lengths'’
over 1 m.

Therefore, for liquids with low viscosity a longer time is necessary for at-
taining uniform motion of the ball, due to greater difference between weight and
drag force and thus longer tubes are required. From here, the idea of replacing the
vertical motion with a motion in a horizontal plane occurred.

04

Fig. 2. Displacement of ball versus time in glycerol

765



03

024

Fig. 3. Variation of ball velocity versus time in glycerol

15

12

09
¥k

| 14

/|

06

03

v

0
0

04 08

%

Fig. 4. Displacement of ball (y) versus time in water
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Fig. 5. Variation of ball velocity (v) versus time in water
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RESULTS AND DISCUSSION

From previous section it is concluded that the ratio between apparent weight of
the ball and the drag force increases for less viscous fluids. To balance the effects
of the two forces, the solution adopted by Alaci'® is considered, where a vibratory
viscometer with translational motion was replaced by an oscillatory viscometer. A
rotation viscometer, consisting in a shaft on which a disc with two set of equidistant
holes placed circularly, and a drum of radius r, are fixed, is designed (Fig. 6a). A
constant operating torque is required, therefore an inextensible wire is wound on
the drum, passing through a pulley of negligible mass and with an attached mass
m_ at the other end. In the holes from the disc, a number N of spherical shells are
fixed by threaded rods. The ball bearings of the shaft, mounted to the ground, were
cleaned and thus dry friction — that is independent of relative velocity, between
balls and races exists. One test implies wounding the wire on the drum, then the
body is set in free motion (Fig. 65 — the tank with fluid was removed in order to
take a photo of the main assembly). Simultaneously with the falling of the body,
the shaft starts to rotate and at a certain time the angular velocity is ®. An uniform
angular velocity is attained when the torque of active force equals the moment of
drag forces:

m g, = NFAFir, )

Equation (9) was written considering the following hypothesis: (1) the velocity
of any point from the surface of the sphere is constant and equal to the velocity
of the centre of the sphere; (2) the friction from the ball bearings and from the
pulley joint is neglected.

Fig. 6. Principle scheme of device and main subassembly of the experimental device

The surface of the disc was marked on radial direction in order to character-
ise the motion of the disc. The motion of the disc was filmed and the movie was
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split into frames in order to identify the instants when the disc attains complete
rotations!®.
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Fig. 7. Rotation angle of main shaft in air and interpolation of experimental data
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Fig. 8. Rotation angle of shaft in the presence of liquid

The variation with time of the shaft angle of rotation in absence and presence
of fluid is presented in Figs 7 and 8, respectively. The liquid is water and the other
parameters used for the results are: mass of the actuating body m_ = 0.568 kg; drum
radius r, = 0.011 m; spherical shells of radii 7, = 0.025 m mounted at a radius -
0.13 m. The experimental data from Fig. 7 were interpolated with two polynomi-
als®, of second and of fourth degree, respectively. As noticed from Fig. 8, the two
interpolation curves are practically identical and this leads to the conclusion that the
second derivative of the polynomial of second degree, that represents the angular
velocity of the disc, is a constant and therefore the torque is constant, independent
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of the angular velocity of the disc. In Fig. 8 it can be observed that the angular
velocity of the disc reaches a constant, steady value, o, = 4.582 rad/s, fact that
validates equation (9). With known angular velocity o_, the Reynolds number is
found with equation (5) and then the drag coefficient C,, is obtained using equation
(7). The balance of moments (equation (9)) now contains as only unknown the
dynamic viscosity of the tested liquid p and has the generic form:

My(w) =M, (10)

where M, (u) is the moment of the forces of hydraulic resistance and M, — the mo-
ment of the driving weight. The equation is a transcendental one and a numerical
procedure is required for solving it. The Newton-Raphson algorithm?! was used in
the present case. To find an initialisation value for the numerical method for solving
equation (10), the two members of the equation were plotted on the same chart,
and a surprising aspect was revealed. The graphs for the above given parameters
are presented in Figs 9 and 10.
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Fig. 9. Variation of moment of resistance forces in Cartesian coordinates
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Fig. 10. Variation of moment of resistance forces in semi-logarithmic plot

As it can be observed, from both figures, the equation has two solutions: p, =
0.00176 Pas and p,, = 0.02538 Pas. From Figs 9 and 10 and the manner by which
equation (10) was obtained, there is no reason for preferring one of the two val-
ues. From experience and literature?>?* we know that a value about p=0.001 Pa s
is expected. But, the question emerging is: when we do not have experience or
information concerning the nature of the liquid, which one of the two values is
the actual one? And, other arising questions are: based on which criterion the cor-
rect solution should be chosen? After identifying the correct root, the other root
does have significance? What is that? To support these matters, it is reminded the
well known example of the Dirac equation, first elaborated for the energy levels
of the hydrogen atom and afterwards with consequences on the discovery of the
positrons, by Anderson®:,

CONCLUSIONS

The paper shows that the mathematical modelling of a particular characteristic of
a phenomenon may lead to a model which completely describes the phenomenon,
with all its aspects and this statement is exemplified by two simple cases, first from
material point dynamics and the second from spatial kinematics. Additionally,
when the considered model generates more than one solution, every one of these
can work and each solution has a particular physical significance. A simple device
is presented, with a falling ball into a liquid, frequently used in viscometer of fall-
ing sphere in a tube type. Analysing the limitations of this device, an improved
alternative is proposed concerning several spherical bodies placed equidistant on a
rotating disc. A weight suspended on a wire, wounded on a drum fixed co-axially
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on the disc actuates the disc into rotation motion. The advantage of the new solu-
tion resides from the fact that different forces acting upon the disc can be changed
by adjusting the distances where the forces are applied. The equation of motion
is obtained by applying the moment of momentum theorem. The experiment is
video-recorded and the viscosity of the liquid to be tested is found at the moment
when the angular velocity of the disc becomes constant, moment chosen from the
frames of the film. The constant velocity of the disc confirms the equality between
the torque of the actuating weight and the moment of hydraulic resistance forces,
these directly depending on viscosity. The above mentioned balance equation is
mathematically expressed via a transcendental equation. A plot of the equation
reveals that the equation has two positive roots. Applying a numerical procedure
helps finding the two solutions. The selection of the correct solution was made
based on the information about the nature of the liquid and on routine, thus the
experience was the criterion in selecting the adequate value of viscosity. The oc-
curring question presents two aspects: (1) does an objective criterion for selecting,
from the two values, the correct one, for any liquid, exist? (2) what are the physical
significations of the two solutions?
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